반응형

중3통계 2

[중3 통계] 분산 (제곱의 평균) - (평균의 제곱) 증명 및 활용법

분산이란?편차 제곱의 평균입니다. 그런데 이 정의만 갖고 문제를 풀다보면 꽤 오래 걸리는 경우가 있습니다.그래서 다른 방법도 하나 추가로 알려 드리려고 합니다.분산은 (제곱의 평균) - (평균의 제곱)이기도 합니다.이건 보통 고등학교 때 배우는 식인데.. 고난도 문제를 풀다보니 이걸 그냥 증명을 해서 쓰는 게 낫겠단 생각이 들더군요. 그래서 아래에 증명을 해보고..! 단계별로 이걸 이용하여 문제를 푸는 포스팅도 이어서 해볼까 합니다.참고로 여기에 쓰이는 기호는 모두 고등학교 때도 그대로 쓰는 기호이고, 오늘 증명하는 이 공식도 고3때까지 쭉 쓰이니 이 참에 알아두시는 게 좋겠죠? 분산 = 제곱의 평균 - 평균의 제곱 증명 (σ는 표준편차입니다.)  분산은 (제곱의 평균) - (평균의 제곱) = 줄여서 제..

[통계] 개념 ox 문제. 평균, 분산 헷갈리는 거 다 잡아줄게..!

통계가 시험범위에 들어있을 때 가장 어려운 건 참/거짓 문제입니다. 정의를 정말 정확하게 알아야 해요.! 얼핏 들으면 헷갈리는 명제들이 많이 나옵니다. 예를 들어볼까요? ㅇ분산은 대푯값의 한 예이다. (x) -> 산포도죠.ㅇ편차가 작을수록 변량은 평균에 가까워진다. (x) -> 절댓값이 작아야 가깝습니다.ㅇ표준편차는 분산의 제곱근이다. (x) -> 양의 제곱근입니다. 그래서 오늘은 이런 개념들을 모아보았습니다. 아래 문제를 한 번 풀어볼까요? 대푯값, 산포도 정의ㅇ자료 전체의 특징을 하나의 수로 나타낸 값을 산포도라고 한다. ㅇ자료 전체의 특징을 대표적으로 나타내는 값을 그 자료의 대푯값이라고 한다. ㅇ변량이 흩어져 있는 정도를 하나의 수로 나타낸 값을 대푯값이라고 한다. ㅇ대푯값에는 평균, 분산, 표준..

반응형