반응형

치환 3

인수분해 - 공통부분 중 상수항 치환하는 문제

공통수학1의 인수분해, 처음에 풀 때 연습을 많이 하셔야 합니다. 공통부분을 치환하는 유형의 경우에는 사실 중학교 3학년 때도 다루던 부분이라 크게 어렵지는 않은데요, 대부분의 예제들이 항상 이차항 + 일차항만 묶어서 치환하길래 아닌 문제를 하나 갖고 와봤습니다. 아래는 간단한 전개 문제입니다. 네 개를 한 번에 전개하기는 힘드니까 두 개씩 묶어서 부분 전개 후 공통부분을 치환하여 푸시면 되죠. 이게 처음에 익숙하지 않으시다면 아래처럼 세 가지 경우를 모두 다 해보세요.! 연습을 한다면 나중에는 잘 보일 것입니다 :-)아래 문제는 2024-1-1-m 다정고 #15입니다.문제 한 번 같이 풀어볼까요?우선 이런 유형의 문제는 무턱대고 전개하시면 곤란합니다. 왜냐하면 시키는 게 결국은 '인수분해'거든요. 전개..

지수/로그 방정식 치환해서 푸는 유형

지수방정식, 로그방정식 치환했을 때의 근 오늘은 지수방정식이나 로그방정식에서 치환해서 푸는 유형을 다뤄볼까 합니다. 자, 우선 방정식에서 '근'이라는 건, 일반적으로 x라는 문자를 지칭합니다. 즉, 주어진 방정식에서 근이라고 불리는 건 x 대신 써도 되는 것들을 말하죠. 그런데 이게 치환해도 같아질까요? 당연히 지칭하는 대상이 달라지기 때문에, '근'이라는 용어로 퉁치지 말고 하나씩 따져가면서 꼼꼼하게 풀어주셔야 합니다. 정 헷갈린다면 치환해서 나오는 근도 새로운 문자로 둬서 구분을 해보도록 해요! 이것도 문제를 하나씩 풀어가면서 용어에 좀 익숙해져봐요! :-) 문제1 여기서 지칭하는 근은 x입니다. 치환했을 때의 치환문자 t가 근이 아니에요. 그래서 t로 치환했을 때는 해당 방정식의 두 근을 t1, t..

점화식 an+1=pan+q꼴 일반항 알고리즘 및 예제

오늘은 수학적 귀납법에서 종종 등장하는 점화식 유형 하나를 다뤄볼까합니다. 원래는 치환해서 푸는 내용까지 교육과정에 있었는데요-, 삭제되었습니다. 다만, 교육과정에서 목표하는 'n에 차례로 수를 대입해서 구한다'는 방법으로 일반항을 제외한 특정항의 경우에는 값을 구할 수 있습니다. 그래서 (아직까지도) 몇몇 교재에서 다루거나, 알려주시는 선생님들이 계셔서 포스팅하게 되었습니다. 바로 등차수열도, 등비수열도 아닌- 마치 일차함수처럼(?) 생긴 점화식이죠. (p가 1이면 등차수열이 되고, q=0이면 등비수열이 되기 때문에 그냥 일반항을 바로 구할 수 있습니다.) 오늘은 이 수열에서 차례로 n에 숫자를 대입하는 방법 말고, 직접 일반항을 구하는 방법을 배워볼 예정입니다. 단계는 아래와 같습니다. 1. 우선 주..

반응형