반응형

2024/12 3

명제 - 집합 포함관계를 이용한 필요충분조건 문제 (벤다이어그램)

명제에서 집합의 포함관계를 이용하여 필요충분조건을 판별하는 문제가 있길래 갖고 와봤습니다. 벤다이어그램을 이용하여 풀면 금방 풀리는데, 그냥 증명하려면 좀 힘들거 같더라고요.! 오늘 예제로 갖고 온 건 한 문제지만, 나중에 더 발견하게 되면 추가하겠습니다.문제 세 집합 A,B,C에서 두 조건 p,q가 다음과 같을 때, p가 q이기 위한 필요충분조건인 것을 찾으시오. (가) p : A∩(B∩C)=Aq : A∪(B∪C)=B∩C (나) p : A∪(B∩C)=Aq : A∩(B∪C)=B∪C (다)p : A∪(B-A)=Bq : A ⊂ B 문제를 풀 때 p가 무슨 조건인지 모두 찾아보세요.  집합의 포함관계의 경우 저는 주로 벤다이어그램을 그려서 찾는 편인데 이게 익숙해지면 굉장히 편하답니다. :-) 조건에 맞는 벤..

인수분해 - 공통부분 중 상수항 치환하는 문제

공통수학1의 인수분해, 처음에 풀 때 연습을 많이 하셔야 합니다. 공통부분을 치환하는 유형의 경우에는 사실 중학교 3학년 때도 다루던 부분이라 크게 어렵지는 않은데요, 대부분의 예제들이 항상 이차항 + 일차항만 묶어서 치환하길래 아닌 문제를 하나 갖고 와봤습니다. 아래는 간단한 전개 문제입니다. 네 개를 한 번에 전개하기는 힘드니까 두 개씩 묶어서 부분 전개 후 공통부분을 치환하여 푸시면 되죠. 이게 처음에 익숙하지 않으시다면 아래처럼 세 가지 경우를 모두 다 해보세요.! 연습을 한다면 나중에는 잘 보일 것입니다 :-)아래 문제는 2024-1-1-m 다정고 #15입니다.문제 한 번 같이 풀어볼까요?우선 이런 유형의 문제는 무턱대고 전개하시면 곤란합니다. 왜냐하면 시키는 게 결국은 '인수분해'거든요. 전개..

반응형