반응형

복소수 4

[내신대비] 복소수 실수 조건 응용문제

고난도로 나오는 복소수의 실수 조건을 응용한 문제입니다. 복소수는 z=a+bi이기 때문에(a,b는 실수)잘 모르겠으면 이렇게 쓰고 참/거짓을 판별하면 됩니다. 그러나 이렇게 풀면 너무 오래 걸리는 것 같은 문제들이 있죠. 문항 3제를 선정해 보았습니다.  z=a+bi로 두어도 풀리긴 합니다. 그리 오래 걸리진 않아요. 켤레의 성질을 이용하면 식정리만 잘해도 답이 바로 나옵니다.역시나 z=a+bi로 두어도 풀리긴 합니다. 켤레의 성질을 이용하는 풀이도 연습 해두시면 좋습니다. 이건 켤레의 성질을 이용하시는 편이 훨씬 편합니다. 풀이는 긴 편이니 아래 포스팅 참고하시면 됩니다.   복소수 실수 조건 응용 문제오늘은 고난도로 종종 나오는 복소수의 실수 조건을 응용한 문제 몇 개를 풀어 보겠습니다. 복소수의 성..

복소수 실수 조건 응용 문제

오늘은 고난도로 종종 나오는 복소수의 실수 조건을 응용한 문제 몇 개를 풀어 보겠습니다. 복소수의 성질 하나만 살펴볼게요. pf) z=a+bi라고 두면, 주어진 식은 a+bi = a-bi이므로 2bi=0, 즉 b=0이 되므로 z는 실수가 됩니다. 이 명제는 역도 참입니다. 즉 어떤 복소수가 실수라고 주어지면 켤레를 취해도 둘이 같다는 성질! 실전에서 문제를 풀면서 좀 더 익혀보도록 합시다. 문제 1 주어진 복소수가 실수이므로 켤레를 씌워도 둘이 같습니다. 이후로는 식을 정리해주시면 돼요. 만약 식 자체가 그리 복잡하지 않다면, z=a+bi를 넣고 실수화 하셔도 됩니다. 하지만, 바로 아래 문제2와 같이 대입해서 푸는 게 힘든 문제도 있으니 이 방법도 꼭 알아두세요! 문제2 문제에 딸린 조건이 많네요. s..

복소수 부호 (근호 조건) 총 정리!

오늘은 부호 조건에 대해 간단하게 리마인드해볼게요! 위의 식을 봤을 때, 오른쪽에 짤린 것처럼 보이는 5개의 식이 자연스럽게 나오지 않는다면, (혹은 5개나 있었어? 라고 되묻는다면-) 오늘의 포스팅 주목하셔야해요. 위는 고1때 복소수 단원을 학습 할 때 주로 등장합니다만, 이후에도 다른 것들과 연결해서 종종 나옵니다. 예를 들면, 수1의 로그조건이라던가..? 뭐.. 아무튼 그래서 내용을 잘 모르더라도 기계적으로라도 공식을 알고 있어야 해요. 실제로 숫자가 들어있어서 계산을 할 때는 공식을 이용해서 쓰려기보다는 숫자를 다 i로 바꾸어서 계산 하는 편이 덜 헷갈립니다. 만약 조건이 각각 a

[복소수] 제곱이 양수/음수인 유형 - 순허수, 실수 조건

복소수에서 순허수 조건이나 실수조건 간단하게 정리해봅시다. 복소수 z= a+bi (a, b는 실수, i는 √(-1)) z가 실수 ⇔ b=0 z가 순허수 ⇔ a=0, b≠0인 건 복소수를 맨 처음 정의하면서 배우죠. 특히나 순허수의 경우 제곱하면 음수가 나오기 때문에 이를 활용한 문제가 종종 나온답니다. 예제를 통해 가볍게 문제를 풀어봅시다. z가 벌써 전개하면 항이 6개가 나오는데 이걸 제곱해서 실수부분/허수부분으로 나누려는 생각은 no! z가 순허수라면 제곱해서 음의 실수가 되므로 z만 가볍게 정리해줍니다. 문제에서 n은 자연수라고 했으므로 정답은 7만 가능합니다. 문제 1 항의 개수를 보세요. z를 직접 제곱하는 건 지양하는 게 좋겠죠? 간단하게 리마인드 해보면, z의 제곱이 음의 실수가 되어야 하므..

반응형