반응형

삼각비 3

중3 삼각비 - 넓이로 푸는 문제 모음

보통 삼각비의 값을 물어보면 수선의 발을 내려 직각 삼각형을 이용해서 구합니다. 그렇지만 직각을 그리기 힘들거나 할 경우엔,넓이를 이용하면 좀 더 쉬운 문제들도 있어요. 아래 문제들은 시험보기 전에 풀어보면 많은 도움이 될 것입니다. 문제와 풀이는 추후 업데이트 될 수 있습니다. 문제1아래 그림의 정사각형 ABCD에서점 M, N이 각각 BC, CD의 중점이고∠MAN=x라 할 때, sinx의 값을 구하여라. 정답 : 3/5 문제2아래 그림과 같이 직각삼각형 ABC에서∠C=90º, BC=CD=AD=5이고∠ABD=x일 때, sinx와 cosx의 곱을 구하여라.정답 : 3/10문제3∠A=90º인 직각삼각형 ABC에서AB위의 점 D에 대해AD:DB=2:1, ∠ADC=60º가 성립한다.∠DCB=xº라 할 때, si..

[삼각비] 특수각 사인, 코사인, 탄젠트 15º, 75º, 22.5º, 67.5º

삼각비의 특수각은 0º, 30º, 45º, 60º, 90º까지는 외워서 쓰죠. 그리고 미적분에서 삼각함수의 덧셈정리를 배우고 나면, 15º=45º-30º 75º=45º+30º 22.5º=45º/2 67.5º=45º+22.5º or 90º-22.5º 이런 식으로 특수각들로 만들 수 있는 다른 각도 삼각비의 값을 구할 수 있답니다. 그렇지만 오늘의 카테고리는 중등 3학년 삼각비! 그래서 도형으로 해당 값들을 유도해서 풀어볼거에요. 중3 삼각비 15도, 75도 유도 기본은 우리가 아는 30º, 60º, 90º로 이루어진 직각 삼각형과 직각 이등변 삼각형 두 개를 붙여놓은 걸로 시작합니다. 처음부터 미지수를 쓰면 눈에 잘 안 들어올 수 있으니 간단하게 숫자로 설명하고 일반화하도록 할게요! 아래 그림과 같이 BE..

삼각비 특수각이 아닐 때 객관식 문제

오늘은 기말고사에 종종 나오는 삼각비 문제 중, 특수각이 아닌 경우에 대해서 다뤄봅시다. 오늘은 공식을 2개 외울거에요. 딱 이번 시험에서만 쓰이는 공식이고, 객관식 문제를 대비하기 위함이니 그냥 가볍게 외우고 가줍시다.^^ 객관식만 다루는 이유? 사실 서술형만되도 굳이 이걸 외울 필요는 전혀 없습니다. 그냥 유도해서 쓸 수 있거든요. 보통은 특수각이 아닌 경우에는 sin55'와 같은 각의 근삿값을 주기 때문에, 굳이 문자로 나타낼 필요가 없기도 하구요. 그렇지만 객관식의 경우에는 보기 하나씩 유도하는데 시간도 오래 걸리고, 굳이 다른 유형은 물어보지 않으므로, 그냥 시험 직전에 이 포스팅 한 번 쭉-보고 공식 2개 외워가면 되겠습니다! 뭐.. 개인적으로 시험 출제 빈도 자체는 둔각이 조금 더 높은 것 ..

반응형