반응형

삼각함수의활용 3

삼각함수 활용 도형 고난도 문제 모음 - 모의고사, 수능 기출

역시나 일단 문제부터 풀어보려고 올리는... 기출 베이스의 삼각함수의 활용 도형 고난도 문제입니다. 우선 문제와 정답부터 업로드하고, 풀이는 차차 업데이트 할게요. 문제1 2022학년도 6월 평가원 #10 정답 : (4√10)/5 문제2 2023 대학수학능력시험 #11 정답 : (5√2)/2 문제3 2020학년도 10월 평가원 #17 정답 : 125π/2 문제4 2020학년도 4월 교육청 #19 정답 : (32√3)/3 문제5 2021학년도 10월 교육청 #21 정답 : 84 문제6 2021학년도 3월 교육청 #21 정답 : 15 문제7 2023학년도 10월 교육청 #21 정답 : 6 참고로 문제도 추가로 계속 업데이트 될 수 있답니다 :-) 만약 내신 고난도 문제도 풀어보고 싶다면 아래 포스팅 참고하세..

삼각함수 활용 도형 고난도 문제 모음 - 내신용

이건 기본문제 말고 내신에 나올만한 삼각함수 도형 고난도 선별 문제입니다. 풀이를 다 올리자니 시간이 너무 오래 걸릴 것 같아 일단 문제와 정답 업로드부터 합니다. 풀이는 차차 올릴 예정이에요. :-) 뭐.. 내신 기간 전에는 업로드 하겠죠..?; 문제 1 아래 그림과 같이 AB=2, AC=5이고, ∠CAB=60º인 삼각형 ABC가 있다. ∠CAB의 이등분선이 원과 만나는 점을 D, 선분 AC가 원과 만나는 점을 E라 할 때, 두 선분 CD, CE와 호 DE로 둘러싸인 부분과 선분 BD와 호 BD로 둘러싸인 부분의 넓이의 합을 구하시오. 정답 : 95√3 / 98 문제 2 아래 그림과 같이 AB=7, AC=9, sin(∠BAC)=(4√3)/7 인 삼각형 ABC의 꼭짓점 A에서 선분 BC에 내린 수선의 발..

[삼각함수의 활용] 삼각형의 넓이 공식 5가지

삼각함수의 활용에서는 삼각형의 넓이를 자주 구합니다. 삼각형의 넓이를 구하는 공식 5가지를 살펴볼거에요. 꼭 외워주세요! 5가지를 그냥 다 외우려면 상당히 복잡하므로, 우선 크게 1,2,3을 묶어서 같이 외우고 4,5를 외울게요. ①②③은 사인법칙으로부터 파생되는 것 ④ 헤론의 공식 ⑤ 내접원의 반지름과 둘레의 길이로 구하는 방법입니다. 하나씩 차근히 살펴보도록 해요. 가장 기본적인 공식이죠. 중3 때부터 외운 것일 테니 넘어갈게요! 여기에 사인법칙을 잠깐 기억해볼까요? 식에서 sinC를 사인법칙을 이용하여 바꿔주기만 한 것인데 ② 공식이 나왔군요.! 사인법칙 한 번 더 써볼까요? 이번에는 두 변 a,b를 사인법칙을 이용하여 바꿔주었더니 ③ 공식이 같이 나왔어요. ①만 알면 ②,③은 사인법칙으로부터 유도..

반응형