반응형

선대칭 4

[도형의 이동] 평행이동 대칭이동 최단거리 고난도 문제

도형의 이동에서 주로 다루는 선대칭 최단거리 기본 문제를 다 푸셨다면 도전해볼만한 고난도 문제를 몇개 실어봅니다. 이론과 기본 문제는 아래 포스팅 참고하시면 됩니다. (사실 기본기만 알아도 정점을 주는 대부분의 문제는 거의 다 풀립니다.) 도형의 이동 - 선대칭 최단거리 푸는 방법 (거리합의 최솟값) 고1 수학에서 배우는 최단거리 구하는 방법에 대해 오늘 알려드리고자 합니다. 기본적으로 필요한 배경지식은 아래와 같습니다. 오늘 배울 상황은 아래와 같습니다. 이 문제를 푸실 때는 반드시 ladyang86.tistory.com 이번에 실은 문제들은 건너야 하는 강이 2개인 문제와 동점으로만 구성된 문제들이에요. (문제와 풀이는 틈틈이 업데이트 될 수 있습니다.) 문제1 아래 그림과 같이 AB=√5, BC=3..

도형의 이동 - 선대칭 최단거리 푸는 방법 (거리합의 최솟값)

고1 수학에서 배우는 최단거리 구하는 방법에 대해 오늘 알려드리고자 합니다. 기본적으로 필요한 배경지식은 아래와 같습니다. 오늘 배울 상황은 아래와 같습니다. 이 문제를 푸실 때는 반드시 그래프를 그리셔야 합니다.!! 우선 알고리즘을 가볍게 살펴볼까요? 1. 동점(움직이는 점), 정점(고정되어 있는 점) 파악 2. 정점을 동점이 움직이는 직선에 대하여 대칭 : 이 때 점들이 여러 개가 나올 때는 이웃하는 점끼리 살펴봅니다. 3. 그래프에서 길이가 직선이 되는지 확인해보고 문제에서 물어보는 값을 구합니다. 실전에서 문제를 풀어보면서 단계를 하나씩 익혀보도록 해요. 예제1 점 A(-3, 2)에서 y축 위의 점 P를 거쳐 점 B(-1, -2)까지 가는 최단거리는? 이 단원에서 가장 중요한 건 그래프를 그리면서..

대칭을 이용한 고난도 문제 풀이 (x=a, y=b 대칭)

수학2 킬러문항 선대칭, 절댓값, 미분가능,연속 문제 선대칭을 이용해서 풀어야 하는 좋은 문제들 몇 개를 선정해보았습니다. 절댓값이나 미분가능/불가능 이슈를 반드시 숙지하고 있어야 해요. 그래프를 그리면 쉽게 풀리는 문제들입니다. 아니라면 엄.. 좀 많이 돌아가죠. 자잘한 테마별로 알아야 할 것들이 많은데 그 모든 걸 여기에서 해설하며 풀자니 양이 너무 많은 편이라, 우선은 상세한 풀이와 문제만 올려두고, 나머지 테마는 차차 하도록 해요. 이 부분을 풀기 전엔 먼저 x=a 대칭과 y=b 대칭에 관한 함수식 표현을 알고 계셔야 합니다. 그리고 절댓값이 포함된 그래프나 미분가능/불가능 이슈 모두 다요.. 내용은 기회가 되면 다음에 정리해서 올리도록 할게요! 문제1. 2015년 3월 B형 #28 먼저 주어진 ..

대칭이동 - 선대칭 직선 기울기가 +1, -1일 때 빨리 하는 방법

오늘은 직선에 대한 선대칭 중 기울기가 +-1일 때 빨리하는 방법에 대해 알아보겠습니다. 선대칭은 기본적으로 2가지를 사용해서 풉니다. 직선과 수직인 기울기, 그리고 중점을 지난다는 점을 이용하죠. 그런데 기울기가 +1이거나 -1인 경우에는 그냥 점을 대입하는 것만으로 금방 풀 수 있답니다 :-) 우선 이 두 가지를 이용하여 증명을 해보도록 할게요.! 기울기가 1인 직선에 대하여 대칭인 도형의 좌표를 구해보겠습니다. 원래의 도형에 있는 점을 (x, y)라 하고, 대칭이동한 도형 위에 있는 점을 (X', Y')이라고 둡시다. f(x, y)=0이라는 식에 x 대신 Y'-p, y 대신 X'+p를 넣고 정리하여 f(Y'-p, X'+p)=0라고 쓰면 된다.! 근데 이 결론 자체가 별로 와닿지 않죠? 이럴 땐 그냥..

반응형