반응형

평행이동 4

[도형의 이동] 평행이동 대칭이동 최단거리 고난도 문제

도형의 이동에서 주로 다루는 선대칭 최단거리 기본 문제를 다 푸셨다면 도전해볼만한 고난도 문제를 몇개 실어봅니다. 이론과 기본 문제는 아래 포스팅 참고하시면 됩니다. (사실 기본기만 알아도 정점을 주는 대부분의 문제는 거의 다 풀립니다.) 도형의 이동 - 선대칭 최단거리 푸는 방법 (거리합의 최솟값) 고1 수학에서 배우는 최단거리 구하는 방법에 대해 오늘 알려드리고자 합니다. 기본적으로 필요한 배경지식은 아래와 같습니다. 오늘 배울 상황은 아래와 같습니다. 이 문제를 푸실 때는 반드시 ladyang86.tistory.com 이번에 실은 문제들은 건너야 하는 강이 2개인 문제와 동점으로만 구성된 문제들이에요. (문제와 풀이는 틈틈이 업데이트 될 수 있습니다.) 문제1 아래 그림과 같이 AB=√5, BC=3..

지수/로그함수 평행이동, 직선과의 교점 문제

지수로그함수와 직선의 교점 지수함수, 로그함수를 평행이동시킨 모양과 직선의 교점을 구하는 문제를 몇 개 다뤄볼까 합니다. 일반적인 방정식으로는 지수함수와 다항함수, 로그함수와 다항함수의 해를 구하기 힘듭니다. 그러니 교점이 주어졌다고 해서 직접 둘을 연립해서 푼다고 생각하지 마세요.! 직선의 경우에는 기울기를 적극 이용하셔야 하고, 지수/로그 함수는 어떻게 평행이동했는지를 잘 살펴보시면 의외로 쉽게 풀 수 있습니다. 예제를 몇 개 풀어보면서 익혀보도록 해요 :-) 문제 1 2022 수능특강 수학1 Ch2. Lv3 #1 우선 두 로그함수의 관계를 살펴봅시다. 밑이 같으므로 평행이동된 모습이죠. 그런데 마침 주어진 직선의 기울기도 -1/2입니다. 즉, P를 평행이동 시켰더니 Q가 된 것이죠! PQ와 AB의 ..

지수함수와 로그함수의 평행이동, 대칭이동 주의사항

지수함수와 로그함수의 평행이동 또는 대칭이동에 대해 살펴봅시다. 기본적인 평행이동/대칭이동은 다들 아실테니 설명을 생략하고 넘어가겠습니다. 오늘은 종종 내신에서 다루는 지수함수 또는 로그함수를 평행이동, 대칭이동해서 만들 수 없는 모양을 물어보는 문제를 풀어볼거에요. 지수함수 밑이 같으면 얼마든지 평행이동 or 대칭이동해서 만들 수 있습니다. 앞에 상수배가 되어 있어도 얼마든지 평행이동으로 바꿀 수 있습니다. 다만 밑이 다른 건 폭이 다른거라 커버가 불가능합니다.! 문제1 ㄱ. y축으로 1만큼 평행이동 ㄴ. y축으로 대칭이동 후 x축으로 -log₂3만큼 평행이동 ㄷ. x축으로 대칭이동 후, y축으로 -3만큼 평행이동 ㄹ. 밑이 4이므로 불가능 정답 : ㄱ, ㄴ, ㄷ 문제2 ㄱ. x축으로 대칭이동 후 y축..

유리함수의 평행이동 쉽게 찾는 법

원래는 다 이동해야 하는데, 빨리 찾는 꿀팁 알려 드릴게요. 바로 분모를 0으로 만드는 x의 값을 분자에 대입하시면 됩니다. 먼저 간단한 문제를 풀면서, 어떻게 사용하는 건지 알아보도록 할게요. 다음 중 평행이동해서 y=2/x와 겹치는 함수의 그래프를 찾아보도록 합시다. 어때요 굉장히 쉽죠? 그럼 이게 왜 이렇게 풀 수 있는건지 간단하게 증명을 한 번 해보도록 할게요. 방법은 간단합니다. 표준형을 일반형으로 만드는 과정을 잘 관찰하시면 돼요. * 주의사항 위는 분모의 x 계수가 1일 때이므로, 1이 아닐 때는 분모의 x 계수를 같이 보셔야 합니다. 문제를 같이 풀어볼까요? 사실 ①은 x축 방향으로 평행이동한 모양이 바로 보이기 때문에 쉽습니다. 분모의 계수와 분자에 남은 값을 같이 봐야하는 게 포인트죠...

반응형