오늘은 등차수열의 합의 형태를 관찰함으로써 등차수열의 일반항을 빨리 구해보도록 하겠습니다. 우선 등차수열의 합 공식을 살펴볼까요? 식에서 a와 d는 첫째항과 공차로 상수입니다. 문자중 n만 변수죠. 그래서 준 식을 n에 대한 식으로 정리해보면, 상수항이 없는 이차식의 형태가 나옵니다. 반대로 상수항이 없는 이차식도 살펴봅시다. 이것도 일반항을 구해보니 첫번째 항부터 등차수열의 합이 되네요. 즉, 등차수열의 합 = 상수항이 없는 이차식이 되는군요. 그렇다면 지금부터는 둘의 관계를 살펴봅시다. 이차항 계수만 비교해보면 이 식의 의미를 살펴봅시다. 그러니까 상수항이 없는 이차식은 등차수열의 합 공식인데, 이차항의 계수 x 2 = 공차가 나온다는 사실! 게다가 S1 = a1이므로 일반항을 바로 구할 수 있죠. ..