반응형

진위판정 2

함수의 극한 진위판정(참/거짓) 문제

함수의 극한 진위 판정은 거의 대부분의 학생들이 질문하는 영역입니다. 이전에도 한 번 다룬적이 있는데, 오늘은 이 중 함수의 극한의 수렴/발산에 관한 진위판정 문제를 모아서 쭉 풀어볼까 합니다. 이전 포스팅은 아래를 보시면 됩니다. https://ladyang86.tistory.com/40 [함수의 수렴과 연속] 수렴, 발산과 연속, 불연속 진위판정 쉽게 하는 방법 오늘은 함수의 수렴과 연속의 성질들을 쉽게 외우는 방법에 대해 알아보겠습니다. 우리가 고2 내신을 준비하다보면, 진위 판정을 한 번쯤은 해보게 됩니다. 이게 은근 어렵죠. 나중에 좀 더 쓸텐 ladyang86.tistory.com 아래는 모두 수학2에서 다루는 함수를 기준으로 판단하시면 됩니다. 다항함수, 분수함수 - 우선은 요 정도랄까요? ..

[함수의 수렴과 연속] 수렴, 발산과 연속, 불연속 진위판정 쉽게 하는 방법

오늘은 함수의 수렴과 연속의 성질들을 쉽게 외우는 방법에 대해 알아보겠습니다. 우리가 고2 내신을 준비하다보면, 진위 판정을 한 번쯤은 해보게 됩니다. 이게 은근 어렵죠. 나중에 좀 더 쓸텐데 진위판정에서는 되는 성질을 잘 외우시는 것이 중요합니다. 먼저 가장 기본적인 성질들을 살펴보기 전, 간단한 개념 하나만 살펴봅시다. 이항연산에서 '닫혀있다'라는 개념입니다. A라는 집합과 *라는 연산에 대하여 연산 결과가 항상 A라는 집합에 포함된다면, A는 *에 대하여 닫혀있다고 표현합니다. 영어로는 말 그대로 Close 예시를 들자면, 자연수 집합 N과 덧셈 연산+을 살펴보면, 자연수 + 자연수 = 자연수가 되죠. 이 때 +는 N에 대하여 닫혀있다고 표현합니다. 그럼 뺄셈은 어떨까요? 자연수 - 자연수 = 항상..

반응형