반응형

2022/10 2

수학1 수열의 합 공식 - 도형, 조합으로 증명

수학1 수열의 합 기본 공식 (자연수의 거듭제곱의 합) 자연수의 거듭제곱의 합은 우리가 암기해서 쓰는 기본 공식이죠. 보통 아래 3개 정도는 다 외워서 씁니다. ①은 등차수열의 합으로 유도해서 풉니다. 나머지 둘은 어떻게 증명할까요? 보통 교과서에서는 아래와 같이 항등식을 이용하여 유도합니다. 납득은 가지만 별로 직관적으로 와닿지는 않죠. 그래서 다른 방법 두 가지 정도를 추가로 더 이용하여 공식이 성립함을 이해해볼까 합니다. 나무 블럭을 이용한 수열의 합 이해 나무 블럭 세 덩이를 쌓아 올려서 직육면체를 만들어 줍니다. 밑면은 n(n+1)이 되고 위로 튀어나온 나무 블럭은 반으로 갈라 반대쪽을 덮어주면 됩니다. 세 덩이 합쳐서 부피가 n(n+1)(n+1/2)이 되었으니 3으로 나누어서 정리해주면 되죠...

[수학2 주제 탐구 추천] 정반합을 통한 접선의 개념 살펴보기

나는 문과라 도저히 미적분이랑 뭘 엮어야 할지 모르겠다고 고민되는 분이라면 오늘 포스팅 집중! 사회계열, 철학계열까지 충분히 커버가능한 주제를 갖고 왔답니다. 바로 접선에 개념 변화를 정반합의 과정과 엮어서 살펴볼까 합니다. 문과를 위한 수학탐구 추천주제 우선 라카토스의 수학관은 아래와 같습니다. 수학은 추측 - 증명 - 반박의 끊임없는 개선을 통해 성장하는 '준경험주의적 과학'이라는 것이죠. 라카토스의 지식의 성장 과정은 아래와 같습니다. 1) 수학적 추측 제기 2) 원래 추측을 부분추측으로 분해 3) 반례의 등장 & 추측과 증명을 반박 4) 추측과 증명을 개선 (이 부분은 좀 더 자세히 쓰자면 교육학 쪽에서 다루어야 하니 일단은 지양하죠.) ​ 헤겔의 변증법, 라카토스의 수학관 등 인문학쪽에서도 엮을..

반응형