반응형

2023/02 3

[부분 분수] 분수 꼴로 이루어진 수열의 합

수학(하)에서 유리함수 배울 때, 유리식을 추가로 배우셨다면 그 때 나오는 내용이고 아니라면 수학1 수열의 합에서 정식으로 다루게 됩니다. 부분 분수란? 어떤 분수의 분모를 n이라 할 때, 분모가 n의 약수인 분수들의 합이나 차로 나타내는 것을 부분분수 분해 또는 부분분수 전개라고 합니다. 예컨대 분모가 큰 수를 좀 더 가볍게 만들기 위한 방법이랄까요? 고등학교에서는 부분 분수가 수1 수열의 합, 미적분 적분 단원에서 나온답니다. 우리는 간단한 부분분수 분해 정도만 해볼거에요. 식은 아래와 같습니다. 우변을 통분 해서 정리해보시면 두 식이 같다는 걸 쉽게 알 수 있습니다. 중요한 건 실제로 공식을 외워서 문제를 푸는 데 있죠. 간단한 연습 한 번 해볼까요? 분수 꼴로 나타낸 수열의 합 이제부터는 실제로 ..

복잡한 식의 인수분해 - 문자 3개 나오는 경우

오늘은 복잡한 식의 인수분해 중, 문자가 3개 나오는 유형을 연습해 보겠습니다. 우선은 복잡한 식의 인수분해를 어떻게 풀어야 하는지 알고리즘부터 살펴봅시다. 복잡한 식의 인수분해 항의 개수가 5개가 넘어가거나, 주어진 문자가 2개 이상인 경우 사용합니다. ① 가장 낮은 차수의 문자로 내림차순 정렬합니다. (같으면 아무거나-) ② 상수항 부분을(①에서 정렬한 문자 기준) 먼저 인수분해합니다. ③ 전체 인수분해를 합니다. 아무래도 등장하는 문자가 많으면 힘들긴 하죠. 예제에서는 주로 a, b, c 세 문자로 통일하여 풀어보았답니다. 같이 풀면서 익혀봅시다.! 예제 1 a, b, c가 삼각형의 세 변일 때 아래 식을 만족하는 삼각형은 어떤 삼각형인가? a³+a²b-ac²+ab²+b³-bc²=0 예제 2 다음 ..

삼각함수 각변환 총정리

오늘은 삼각함수의 각 변환을 모두 정리해보도록 할게요. 증명은 그래프를 이용하기 보다는, 삼각함수의 정의를 이용해서 해볼 예정입니다. 그래프를 이용한 증명은 다음번에 한 번 해보도록 할게요. 삼각함수의 정의 중심이 원점이고, 반지름이 r인 원 위의 점 P(x, y)에 대하여 동경 OP가 나타내는 각을 θ라 합시다. θ에 대한 함수를 차례대로 sinθ=y/r cosθ=x/r tanθ=y/x라고 정의합니다. 이제 다른 사분면에서 각이 변할 때마다 P(x,y)가 어떻게 변하는지 관찰해 볼게요. 0. 2nπ+θ는 θ와 같으므로 그대로 씁니다. 1. -θ는 θ와 동경의 y좌표 부호가 다릅니다. 그래서 삼각함수를 구해보면 cos 함수는 영향이 없고 나머지 두 함수는 부호가 바뀌게 되죠. 이번엔 π-θ, π+θ도 같..

반응형