반응형

조립제법 4

[나머지 정리] 이차식, 완전제곱식으로 나눈 나머지

이차식으로 나눈 나머지 정리 오늘은 나머지 정리를 다뤄보겠습니다. 보통 일반적으로 서로 다른 수를 대입하여 푸는 건 쉽습니다. 그래서 많이들 틀리는 유형만 가볍게 다뤄볼까 해요. 첫 번째는 완전 제곱식으로 나눈 나머지 정리입니다. 아래 예제를 같이 풀면서 설명할게요. 예제 1 보통 이 문제를 풀 때 다들 아래와 같이 식까지는 세웁니다. 그리고 여기서 보통 많이들 헤매죠. 왜냐면 아는 식은 f(1), f(-2) 2개인데, 미지수가 a, b, c로 총 3개가 나오기 때문입니다. 조금 진정하고 살펴봅시다. 녹색으로 쓴 식 역시 이차식이고, f(x)는 주어진 세 식에서 모두 같은 식입니다. 즉, f(x)는 (x-1) ²으로 나눈 나머지가 3x+2라는 조건을 여기서도 그대로 쓸 수 있죠. (x-1) ²은 이차식이..

항등식 중 조립제법으로 푸는 유형 정리 (조립제법의 중복 사용)

항등식과 조립제법 오늘은 항등식 중, 같은 다항식으로 여러 번 나눈 문제들을 조립제법으로 푸는 방법을 익혀보도록 할게요. 이건 보통 일반적으로 증명.. 은 잘 안 하는 편입니다. 모두 다 서로 다른 문자를 세팅해서 쓰다 보면 식이 엄청 길어지거든요...! 그리고 차수도 커질수록, 쓰는 게 길어지죠. 그래서 일단 몫 부분은 대충 생략했고, 차수는 그냥 좀 더 늘려가면서 쓰시면 돼서 가장 일반적으로 다루는 3차식의 경우에만 증명 비슷 그리한 걸 해보았습니다. 우선은 주어진 삼차식을 (x-α)로 나누면 몫과 나머지가 나오겠죠? 그다음 몫으로 나온 부분만 계속 반복하여 (x-α)로 나누어줍니다. 언제까지? 3차면 3번으로 최고차 계수만 남을 때 까지요..!! 이걸 하나씩 다 떼서 쓰자니 너무 힘들어서 컬러를 다..

계수가 대칭인 상반방정식 (대칭형 사차방정식) 푸는 방법

오늘은 계수가 대칭인 사차방정식을 풀어볼게요. 일반적으로 사차방정식을 풀 때는 삼차방정식과 동일하게 이차식까지 최대한 인수분해하여 풀면 됩니다. 그런데 말입니다- 고1때 나오는 대부분의 삼차방정식은 조립제법을 사용하면 다 풀리는데, 사차는 조립제법을 사용 못하는 경우도 있어요. 이유는 오늘의 포스팅을 보시면 이해가 되게끔 아래에서 설명해 놓았습니다.! 우선은 계수가 대칭인 사차방정식을 푸는 일반적인 방법을 설명해볼게요! 알고리즘대로 차근히 따라서 푸시면 됩니다. 자, 아래 문제를 직접 풀어볼까요? 문제1 쌤, 그냥 조립제법 쓰면 안돼요? 이런 생각이 들 수 있죠. 실제로 위의 방정식은 아래와 같이 조립제법으로 손쉽게 풀립니다. 뭐.. 위처럼 인수가 바로 보인다면, 조립제법으로 바로 푸시면 됩니다.! 인수..

조립제법을 만든 수학자 조립제 이야기

수학이나 과학에서는 사람의 이름을 붙인 정리들이 꽤나 많습니다. 가장 흔하게 알려진 '피타고라스의 정리'부터 얼마 전 포스팅한 '코시 슈바르츠 부등식'등도 수학자 이름을 따서 만든 거죠. 그렇지만 모든 공식이 다 그런 것은 아닙니다. 그래서 이걸 갖고 그럴듯한 농담을 만들어서 이야기하는 걸 쉽게 찾아볼 수 있죠. 오늘 포스팅할 조립제법처럼요. 2009년 만우절날, 위키백과에 어떤 유저가 조립제법을 조립제(...)라는 수학자가 만들었다고 서술했다가 논란이 된 적이 있습니다. 2020년 만우절에도 그런 일이 또 일어났습니다. 우리나라의 유명한 수학자 조립제-라고 어디서 태어났고, 어떤 연구를 했는지 그럴싸하게 올라온 글 아마 쉽게 찾으실 거에요. 각종 커뮤니티나 페이스북 페이지 등에서 꽤나 핫한 게시물이 되..

반응형