반응형

고등수학/고등수학(하) 28

[집합] 대칭차집합의 여집합 성질 정리

오늘은 종종 등장하는 대칭차집합의 여집합의 성질도 한 번 정리해보겠습니다. 혹시 대칭차집합이 뭔지 모르시거나,대칭차집합의 성질도 잘 정리가 안되어있다면?아래 포스팅을 보고 먼저 학습한 다음, 오늘 포스팅을 보길 추천해요.!   대칭차집합 총정리 - 정의, 성질, 문제풀이대칭차집합은 학교 시험에 굉장히 자주 등장하므로 한 번은 다루고 넘어가는 편이 좋습니다. 아무래도 테마로 익히고 나면, 문제 푸는 시간이 단축이 되니까요. 사실 용어 자체를 모른다고 하더hy-jiai.com 대칭차집합의 여집합의 성질들을 가볍게 정리해볼게요. 우선 이걸 쓸 때 특별한 기호는 없지만, 편의를 위해 저는 그냥 *라는 기호를 써보도록 할게요. 오늘 정리할 성질은 아래의 여섯가지입니다. 증명은 이전에 대칭차집합 했던 것과 동일하게..

무리함수의 그래프와 직선의 위치 관계 - 반드시 그래프 그려야 하는 이유

제 경험상, 대부분의 학생이 그래프 그리는 것을 별로 좋아하지 않더라고요. (특히 문과 성향이면 거의 95%..)  그러나 무리함수의 그래프와 직선의 위치 관계는 반드시 그래프를 그려서 풀어야 하는 문제입니다.우선 대표적인 예시 풀어보고,왜 방정식으로만 풀면 안되는지도, 가볍게 설명을 해볼게요.   이 문제는 반드시 먼저 풀어본 다음 풀이를 봐주세요.  .......정답이 얼마가 나왔나요?만약 정답이 -2≤m≤1이라고 나왔다면 높은 확률로 아마 그래프 안 그리고, 판별식만 이용해서 푸셨을 겁니다.  이 문제의 올바른 풀이는 아래와 같습니다.무리함수, 직선 둘 다 그래프로 그려서, 교점이 있도록 기울기를 설정해주시면 됩니다.  처음부터 바로 계산에 들어가지 말고, 위와 같이 m1, m2를 기준으로 답의 형..

[고1 함수] 일반적으로 정의된 함수 문제

딱히 어떤 함수라고 주어지지 않은 상태에서 정의된 함수 f(x)를 다루는 문제 몇 가지를 풀어보겠습니다.이런 경우에는 정말 주어진 함수의 성질을 이용해서 유도하여 풀었습니다.  [예제]실수 전체의 집합에서 정의된 함수 f(x)가 모든 실수 x,y에 대하여 f(x+y) = f(x) + f(y)를 만족시킨다. 에서 옳은 것만을 있는 대로 고른 것은? ㄱ. f(-x)=-f(x)ㄴ. 임의의 자연수 n에 대하여 f(nx)=nf(x)이다.ㄷ. 임의의 양의 유리수 p에 대하여 f(px)=pf(x)이다. 정답 : ㄱ, ㄴ, ㄷ  [예제2]실수 전체의 집합에서 실수 전체의 집합으로의 함수 f(x)가 임의의 두 실수 a, b에 대하여f(a+b)f(a-b) ≤ {f(a)}² - {f(b)}²을 만족시킬 때, 에서 옳은 것만..

[집합] 약수, 배수 들어가는 문제 정리

1. 배수집합 자연수 k의 배수 전체의 집합 일반적으로 Ak={x|x는 k의 배수}와 같이 나타냅니다. 교집합 합집합 사실 이렇게 합집합/교집합 익혀도 되는데, 배수 집합은 그냥 원소 나열법으로 초기에 몇 개를 직접 나열해보시는 걸 추천합니다. 배수/약수 문제는 명제에서도 많이 나오는데, 특히나 참/거짓 포함할 때 이게 은근 헷갈리거든요.. 문제를 같이 풀어 보면서 익혀보도록 해요. 참고로 풀이와 문제는 나중에 더 추가될 수 있습니다. 문제 1 문제2 2. 약수 집합 Bn={x|x는 n의 약수}

[수학 개념] 집합의 정의, 표현방법

집합의 정의 집합 : 어떤 조건에 의하여 그 대상을 명확하게 구분할 수 있는 것들의 모임. 여기서 명확하게 구분할 수 있다는 말은, 누가 들어도 이견이 없이 명확하다는 뜻입니다. ex) 축구를 잘하는 사람들의 모임 잘 한다는 기준은 사람마다 다릅니다. ex2) 월드컵 국가 대표 선수들의 모임 누가 봐도 명확하죠. 예제 다음 중 집합인 것에는 o표, 집합이 아닌 것에는 x 표를 하여라. 1. 작은 짝수의 모임 2. 다리가 4개인 동물들의 모임 3. 7보다 작은 홀수의 모임 4. 날개가 있는 동물들의 모임 5. 우리나라에서 인구가 많은 도시의 모임 6. 꽃받침이 있는 식물들의 모임 7. 키 큰 사람의 모임 8. 자연수에서 큰 수의 모임 9. 우리반에서 키가 가장 큰 사람의 모임 10. 아름다운 꽃들의 모임...

대칭차집합 총정리 - 정의, 성질, 문제풀이

대칭차집합은 학교 시험에 굉장히 자주 등장하므로 한 번은 다루고 넘어가는 편이 좋습니다. 아무래도 테마로 익히고 나면, 문제 푸는 시간이 단축이 되니까요. 사실 용어 자체를 모른다고 하더라도 정의 혹은 벤 다이어그램을 이용하여 풀 수 있습니다. 대칭차집합 정의 두 집합 A,B에 대하여 차집합 A-B와 B-A의 합집합을 대칭차집합이라 하고, 일반적으로 연산 기호 △를 써서 다음과 같이 나타냅니다. A△B = (A - B) ∪ (B - A) = (A∪B) - (A∩B) 일반적으로..라는 말을 쓴 건 다른 기호로도 얼마든지 정의해서 나올 수 있기 때문이에요. △라는 기호를 대칭차집합에 쓴다고 정해둔 건 아니랍니다. 대칭차집합은 수식으로 쓰면 여러가지 방법으로 표현할 수 있기 때문에, 이것이 대칭차집합이다-라고..

[순열과 조합] nPr, nCr 성질 증명 및 예시 (서술형, 빈칸형 출제)

서술형, 빈칸형으로 자주 출제되는 순열과 조합의 성질 한 번 정리해보고 가겠습니다. 아래 여섯 가지를 증명하실 수 있으면 오늘 포스팅은 그냥 넘어가셔도 됩니다. 아니라면 같이 연습해보시는 게 좋겠죠? ㅎㅎ 증명에서는 P, C둘 다 팩토리얼로 나타낸 식을 사용하면 됩니다. 순열의 성질, 공식 증명 써야 할 식의 변형이 잘 이해가 안된다면 옆에 숫자를 한 번 대입해서 적어보시면 이해가 쉬운 편이랍니다. 조합의 성질, 공식 증명 조합의 경우도 순열과 마찬가지로 팩토리얼 형태로 다 바꾸어 준 다음 통분해서 식을 증명하시면 됩니다. 통분할 때 양쪽에 모두 다 곱해줘야 하는 경우도 있으니 주의하시고요.! 위의 성질들은 조합에서 맨 위의 두 개 식을 제외하면 굳이 외워서 써야 하는 식은 아닙니다. 그래서 증명 정도만..

[경우의 수, 확률] 3의 배수 만들기 (3으로 나눈 나머지 이용)

경우의 수 또는 확률에서는 배수 만들기 문제가 종종 나옵니다. 만약 배수의 특징을 모른다면 아래 포스팅 먼저 정독하고 오세요. https://ladyang86.tistory.com/57 배수 판정법 (초중고딩 모두 이해할 수 있음)경우의 수를 구하다보면 배수 판정법이 종종 쓰일 때가 있죠. 쉬운 편이니 금방 정리하고 넘어갑시다. 규칙이 비슷한 것들끼리 살펴보고 필요하다면 증명도 같이 해보도록 해요.^^ 끝자리 수로ladyang86.tistory.com 일반적으로 숫자를 만들 때, 2의 배수나 5의 배수처럼 끝자리만 맞춘다고 되는 게 아닌 유형이 바로 3의 배수 만들기입니다. 3의 배수의 경우에는 각 자리 숫자의 합이 3의 배수이면 됩니다. 주어진 숫자가 적은 경우에는 숫자를..

코시 슈바르츠 부등식 항 3개 이상 일 때 (등호 조건 및 증명)

내신 대비 하면서 문제를 풀다보니 은근 자료 찾기가 힘들어서 코시 슈바르츠 부등식 포스팅을 계속하게 되네요. 이게 내용상 엄청 중요해서 강조하려고 작성하는 것 보다, 교육과정에서 메인으로 다루는 내용은 아니다보니 오히려 알려주고 싶은데 모여있는 내용이 잘 없어서 쓰게 되는 것 같습니다. 그래서 더 이상은 포스팅 안했으면 좋겠다는 희망을 담아 항이 3개 이상인 코시 슈바르츠 부등식을 오늘 다뤄볼까 합니다. 혹시 아직 코시 슈바르츠 부등식이 익숙치 않으신 분들은 포스팅 하단에 링크 걸어두었으니 참고 하시기 바랍니다. 코시 슈바르츠 부등식 항이 3개일 때, n=2일 때는 이전에 증명했으니 이번에는 n=3일때를 증명해보겠습니다. 증명방법은 동일합니다. 차로 비교하면 되는데, 과정에서 완전 제곱식이 나오기 때문에..

유리함수 그래프 7초만에 그리는 법 (일반형, 역함수 바로 찾기)

유리함수의 그래프 어떤 형태든지 7초 만에 그리는 방법 오늘 배워보도록 할게요. 유리함수 그래프 그리는 방법 표준형, 일반형 상관없이 순서는 아래와 같습니다. 1. 점근선을 구한다. 2. 곡선이 지나는 한 점을 구한다. (주로 y절편 이용) 3. 점근선에 안 닿게 그래프를 잘 그려준다. 무엇보다도 유리함수의 그래프 특징을 익혀 두시는 게 가장 중요합니다. 유리함수 그래프는 선대칭인 동시에 점대칭이므로 그래프 성질만 똑바로 알아도 많은 문제를 금방 풀 수 있어요. 그리고 일반형의 경우에는, 아래와 같이 점근선의 방정식을 바로 찾을 수 있습니다. 정리하자면 아래와 같죠. 그럼 실제로 한 번 그려볼까요? 노란선에 닿지 않으면서 (점근선) 빨간 점을 지나는 (지나는 한 점) 유리함수의 그래프는 어떻게 생겼을까요..

반응형