반응형

고등수학/고등수학(하) 25

[집합] 약수, 배수 들어가는 문제 정리

1. 배수집합 자연수 k의 배수 전체의 집합 일반적으로 Ak={x|x는 k의 배수}와 같이 나타냅니다. 교집합 합집합 사실 이렇게 합집합/교집합 익혀도 되는데, 배수 집합은 그냥 원소 나열법으로 초기에 몇 개를 직접 나열해보시는 걸 추천합니다. 배수/약수 문제는 명제에서도 많이 나오는데, 특히나 참/거짓 포함할 때 이게 은근 헷갈리거든요.. 문제를 같이 풀어 보면서 익혀보도록 해요. 참고로 풀이와 문제는 나중에 더 추가될 수 있습니다. 문제 1 문제2 2. 약수 집합 Bn={x|x는 n의 약수}

[수학 개념] 집합의 정의, 표현방법

집합의 정의 집합 : 어떤 조건에 의하여 그 대상을 명확하게 구분할 수 있는 것들의 모임. 여기서 명확하게 구분할 수 있다는 말은, 누가 들어도 이견이 없이 명확하다는 뜻입니다. ex) 축구를 잘하는 사람들의 모임 잘 한다는 기준은 사람마다 다릅니다. ex2) 월드컵 국가 대표 선수들의 모임 누가 봐도 명확하죠. 예제 다음 중 집합인 것에는 o표, 집합이 아닌 것에는 x 표를 하여라. 1. 작은 짝수의 모임 2. 다리가 4개인 동물들의 모임 3. 7보다 작은 홀수의 모임 4. 날개가 있는 동물들의 모임 5. 우리나라에서 인구가 많은 도시의 모임 6. 꽃받침이 있는 식물들의 모임 7. 키 큰 사람의 모임 8. 자연수에서 큰 수의 모임 9. 우리반에서 키가 가장 큰 사람의 모임 10. 아름다운 꽃들의 모임...

대칭차집합 총정리 - 정의, 성질, 문제풀이

대칭차집합은 학교 시험에 굉장히 자주 등장하므로 한 번은 다루고 넘어가는 편이 좋습니다. 아무래도 테마로 익히고 나면, 문제 푸는 시간이 단축이 되니까요. 사실 용어 자체를 모른다고 하더라도 정의 혹은 벤 다이어그램을 이용하여 풀 수 있습니다. 대칭차집합 정의 두 집합 A,B에 대하여 차집합 A-B와 B-A의 합집합을 대칭차집합이라 하고, 일반적으로 연산 기호 △를 써서 다음과 같이 나타냅니다. A△B = (A - B) ∪ (B - A) = (A∪B) - (A∩B) 일반적으로..라는 말을 쓴 건 다른 기호로도 얼마든지 정의해서 나올 수 있기 때문이에요. △라는 기호를 대칭차집합에 쓴다고 정해둔 건 아니랍니다. 대칭차집합은 수식으로 쓰면 여러가지 방법으로 표현할 수 있기 때문에, 이것이 대칭차집합이다-라고..

[순열과 조합] nPr, nCr 성질 증명 및 예시 (서술형, 빈칸형 출제)

서술형, 빈칸형으로 자주 출제되는 순열과 조합의 성질 한 번 정리해보고 가겠습니다. 아래 여섯 가지를 증명하실 수 있으면 오늘 포스팅은 그냥 넘어가셔도 됩니다. 아니라면 같이 연습해보시는 게 좋겠죠? ㅎㅎ 증명에서는 P, C둘 다 팩토리얼로 나타낸 식을 사용하면 됩니다. 순열의 성질, 공식 증명 써야 할 식의 변형이 잘 이해가 안된다면 옆에 숫자를 한 번 대입해서 적어보시면 이해가 쉬운 편이랍니다. 조합의 성질, 공식 증명 조합의 경우도 순열과 마찬가지로 팩토리얼 형태로 다 바꾸어 준 다음 통분해서 식을 증명하시면 됩니다. 통분할 때 양쪽에 모두 다 곱해줘야 하는 경우도 있으니 주의하시고요.! 위의 성질들은 조합에서 맨 위의 두 개 식을 제외하면 굳이 외워서 써야 하는 식은 아닙니다. 그래서 증명 정도만..

[경우의 수, 확률] 3의 배수 만들기 (3으로 나눈 나머지 이용)

경우의 수 또는 확률에서는 배수 만들기 문제가 종종 나옵니다. 만약 배수의 특징을 모른다면 아래 포스팅 먼저 정독하고 오세요. https://ladyang86.tistory.com/57 배수 판정법 (초중고딩 모두 이해할 수 있음)경우의 수를 구하다보면 배수 판정법이 종종 쓰일 때가 있죠. 쉬운 편이니 금방 정리하고 넘어갑시다. 규칙이 비슷한 것들끼리 살펴보고 필요하다면 증명도 같이 해보도록 해요.^^ 끝자리 수로ladyang86.tistory.com 일반적으로 숫자를 만들 때, 2의 배수나 5의 배수처럼 끝자리만 맞춘다고 되는 게 아닌 유형이 바로 3의 배수 만들기입니다. 3의 배수의 경우에는 각 자리 숫자의 합이 3의 배수이면 됩니다. 주어진 숫자가 적은 경우에는 숫자를..

코시 슈바르츠 부등식 항 3개 이상 일 때 (등호 조건 및 증명)

내신 대비 하면서 문제를 풀다보니 은근 자료 찾기가 힘들어서 코시 슈바르츠 부등식 포스팅을 계속하게 되네요. 이게 내용상 엄청 중요해서 강조하려고 작성하는 것 보다, 교육과정에서 메인으로 다루는 내용은 아니다보니 오히려 알려주고 싶은데 모여있는 내용이 잘 없어서 쓰게 되는 것 같습니다. 그래서 더 이상은 포스팅 안했으면 좋겠다는 희망을 담아 항이 3개 이상인 코시 슈바르츠 부등식을 오늘 다뤄볼까 합니다. 혹시 아직 코시 슈바르츠 부등식이 익숙치 않으신 분들은 포스팅 하단에 링크 걸어두었으니 참고 하시기 바랍니다. 코시 슈바르츠 부등식 항이 3개일 때, n=2일 때는 이전에 증명했으니 이번에는 n=3일때를 증명해보겠습니다. 증명방법은 동일합니다. 차로 비교하면 되는데, 과정에서 완전 제곱식이 나오기 때문에..

유리함수 그래프 7초만에 그리는 법 (일반형, 역함수 바로 찾기)

유리함수의 그래프 어떤 형태든지 7초 만에 그리는 방법 오늘 배워보도록 할게요. 유리함수 그래프 그리는 방법 표준형, 일반형 상관없이 순서는 아래와 같습니다. 1. 점근선을 구한다. 2. 곡선이 지나는 한 점을 구한다. (주로 y절편 이용) 3. 점근선에 안 닿게 그래프를 잘 그려준다. 무엇보다도 유리함수의 그래프 특징을 익혀 두시는 게 가장 중요합니다. 유리함수 그래프는 선대칭인 동시에 점대칭이므로 그래프 성질만 똑바로 알아도 많은 문제를 금방 풀 수 있어요. 그리고 일반형의 경우에는, 아래와 같이 점근선의 방정식을 바로 찾을 수 있습니다. 정리하자면 아래와 같죠. 그럼 실제로 한 번 그려볼까요? 노란선에 닿지 않으면서 (점근선) 빨간 점을 지나는 (지나는 한 점) 유리함수의 그래프는 어떻게 생겼을까요..

산술기하 평균 부등식의 모든 것 (연습용 문제 다수 수록)

난 산술기하 평균이 정말 너무 약하다!! -하는 분들을 위한 포스팅입니다. 제 제자들도 맨 처음 이걸 배울 때 너무 어려워하기도 하고... 연습용 문제가 좀 산발적으로 있는 듯하여, 정리차 포스팅합니다. 우선 증명은 아래와 같습니다. a>0, b>0일 때, 기하적으로도 증명하는 방법은 이전에 포스팅해두었으니 아래 링크 참고 하시구요..! 산술기하 평균(부등식) - 기하적인 방법으로 증명하기 절대부등식의 대표적인 예로 산술기하평균을 이용한 부등식을 배웁니다. 이때, 두 식의 차를 이용하여 증명하는 것이 가장 일반적이지만, 기하적인 방법으로도 증명할 수 있습니다. 산술기하 ladyang86.tistory.com 그럼 이제 본격적으로 익혀봅시다. 우선은 산술기하평균 공식부터 5번 써보고 시작합시다. a>0, ..

명제의 거짓 반례 조건

명제가 거짓임을 보이기 위한 반례 오늘은 명제 p이면 q이다가 거짓임을 보이기 위한 반례를 잡는 법을 배워보도록 해요! p이면 q이다. 이 명제가 참이라면 P⊂Q입니다. 이 명제가 거짓이라면 P에는 속하지만 Q에는 속하지 않는 원소가 있겠죠? 그게 바로 반례입니다. 즉 우리가 p이면 q이다가 거짓이라고 말하려면, p이지만 q가 아닌 원소를 갖고와야 하는 거죠. 예를 들어볼까요? p : 노래를 잘한다. q : 키가 크다. 여기서 우리가 p->q가 참이라고 주장하는 건 노래를 잘하면 키가 크다 이렇게 만들어 볼 수 있겠군요. 이 주장이 틀렸다는 걸 보여주려면 어떤 사람을 데려와야 할까요? 노래는 잘 하지만, 키는 작은 친구를 데려와야겠죠? 즉 p는 만족하지만 q는 만족하지 않는 원소가 반례입니다. 그럼 이제..

우함수, 기함수 곱/합성 성질 정리

우함수와 기함수를 곱하면? 기함수에 우함수를 합성하면? 이런 것 궁금하셨던 분들 주목! 오늘은 수학(하)와 수학2에서 나오는 우함수와 기함수에 대해 정리를 해보도록 하겠습니다. 사실은 수학(하)의 함수파트에서 배울 수도 있고, 안 배울수도 있어요. 교육과정에 필수 포함된 내용은 아니거든요. 근데 수학2에서는 꼭 나옵니다. 그리고 수학2에서도 이게 본 내용은 아니에요. 그래서 수학(하)에서 배우지 않았더라면 알아서 학습해야하는(?) 부분입니다. 조금 억울할 수는 있겠지만.. 뭐.. 네.. 그냥 공부 열심히 합시다. 우선 우함수는 y축 대칭인 함수입니다. f(-x)=f(x)로 표현이 되죠. 기함수는 원점 대칭인 함수입니다. g(-x)=-g(x)로 쓸 수 있어요. 일반적으로 증명은 주어진 함수에 x 대신 -x..

반응형