반응형

고등수학/수학1 29

[부분합] 등차수열의 합도 등차수열, 등비수열의 합도 등비수열

부분합으로 이루어진 수열 오늘은 등차수열과 등비수열의 부분합으로 이루어진 수열을 살펴볼까 합니다. 간단하게 결론부터 이야기하자면, 앞에서부터 차례로 같은 개수로 끊어서 더하면 등차수열의 합은 등차수열, 등비수열의 합은 등비수열이에요. 이걸 이용하면 빨리 풀 수 있는 문제가 많기 때문에 한 번 익힌 다음 오래오래 써먹어봅시다. 등차수열의 합은 등차수열 간단합니다. 등차수열을 n개씩 잘라서 더해볼게요. 즉, 합끼리의 차도 항상 동일하기 때문에, 이 역시 등차수열입니다. 문자로 쓰니 조금 어려운가요? 좀 더 쉽게 예제를 풀면서 익혀보도록 할게요. 예제 1 등차수열 {an}의 첫째항부터 제 n항까지의 합을 Sn이라 하자. S5=25, S10=75일 때, S15의 값을 구하시오. 앞에서부터 5개씩 잘라서 더한 다..

탄젠트 점근선의 방정식 완전 정복

탄젠트 그래프에서 점근선의 방정식 구하는 법 이게 보통 탄젠트 그래프 개형 배울 때 가장 어려운 부분이죠. 우선은 평행하지 않은 그래프를 기본으로 점근선의 방정식을 구하고, 그다음에 평행이동으로 반영해주면 됩니다. 1. 우선은 주기를 구합니다. 2. x=주기/2 + 주기n으로 점근선의 방정식을 세웁니다. 3. x축 평행이동을 반영해줍니다. 4. 식을 정리해주시면 됩니다. 탄젠트 함수 점근선의 방정식 관찰 해보기 우선 가장 기본적인 탄젠트 함수의 그래프를 살펴봅시다. 탄젠트 그래프를 관찰해보니 원점을 기준으로 대칭이라, 아래와 같이 점근선의 방정식 사이의 거리가 주기인 것이 보이네요. 그렇다면 x축 양의 방향에서 가장 먼저 나오는 점근선은 x=주기/2이 되겠군요! 그리고 주기만큼 계속 반복돼서 나옵니다. ..

[지수] 거듭제곱근 실근의 개수 (내신 선별)

실근의 개수 오늘은 거듭제곱근 중 실근의 개수에 대한 내용을 정리하고 문제를 풀어보겠습니다. 이건 중요한 내용이라 이전에도 포스팅을 했었습니다. 그래서 간단한 기본기 문제를 풀고 싶으신 분들은, 아래 내용부터 먼저 복습하고 오세요. 거듭제곱근 중 실수인 것의 개수 거듭제곱근 중 실수의 개수에 관한 문제들을 풀어볼거에요. 개념 정리가 머릿속에 딱!되어있으면 굉장히 쉽게 풀 수 있습니다. 우선 거듭제곱근의 정의는 아래와 같습니다. 보통 근호를 이용해 ladyang86.tistory.com 겹치는 내용이지만 간단하게 정리해봅시다. 우선 정의를 명확하게 알아야겠죠? 복소수 범위에서 n제곱근은 항상 n개 나옵니다. 아래도 같은 표현인데 사용하는 문자가 항상 x와 a인 것은 아니니 꼭 의미를 이해하고 풀어주세요. ..

지수 - 곱셈 공식의 변형, 치환해서 풀기

지수에 분수가 들어가 있으면 치환해서 푸는 게 훨씬 편합니다. 그래서 오늘은 지수 단원에서 배우는 내용 중, 곱셈 공식 쓰는 유형을 모두 치환으로 풀어볼 거예요. 1학년 때 우리를 괴롭혔던 곱셈 공식, 계속 나오네요. 혹시 까먹으셨으면 먼저 공식 복습부터 해오시고요..! 이건 번거롭더라도 되도록이면 치환해서 풀길 권하는 바입니다. 그럼 무얼 치환하느냐? 가장 작은 분수의 거듭제곱을 치환하는 편이 쉽습니다. 솔직히 어려운 내용은 아닌데, 풀려보면 의외로 오답률은 높거든요. 아는 문제라고 빨리 풀고 넘어가려고 하지 말고, 꼼꼼하게 풀어서 맞추시길 바랍니다. 문제 1 문제 2 문제 3 이것도 비슷한 유형 중 좋은 문제가 있으면 문제를 더 추가하도록 할게요! 얼마 남지 않은 중간고사 준비 열심히 하시고, 내가 ..

두 동경의 위치관계 총정리 (같음, 원점대칭, x축, y축 대칭, y=x 대칭 등)

동경의 위치관계 혹시 이상한 공식 같은 거(?) 외워서 풀려는 학우 여러분은 없겠죠? 오늘은 이해를 기반으로 한 동경의 위치관계를 총정리 해볼까 합니다. 순서는 아래와 같습니다. 1. 그래프를 그린다. (이 때 동경은 최대한 안예쁘게(?) 그린다.) 2. 두 동경을 적절하게 더하거나 빼서 특수각을 만든다. (0˚, 90˚, 180˚, 270˚ 등등..) 3. 식을 정리 후, 범위에 맞게 n을 대입해준다. 그래서 이 순서에 맞게, 두 동경이 일치하는 경우, x축 대칭인 경우, y축 대칭인 경우, 원점 대칭인 경우, y=x 대칭인 경우로 전부 다 풀어보면서 하나씩 익혀보도록 합시다. 문제1 각 θ를 나타내는 동경과 각 5θ를 나타내는 동경이 일치한다. 이러한 각θ를 구하여라. (단 0º

지수/로그 방정식 치환해서 푸는 유형

지수방정식, 로그방정식 치환했을 때의 근 오늘은 지수방정식이나 로그방정식에서 치환해서 푸는 유형을 다뤄볼까 합니다. 자, 우선 방정식에서 '근'이라는 건, 일반적으로 x라는 문자를 지칭합니다. 즉, 주어진 방정식에서 근이라고 불리는 건 x 대신 써도 되는 것들을 말하죠. 그런데 이게 치환해도 같아질까요? 당연히 지칭하는 대상이 달라지기 때문에, '근'이라는 용어로 퉁치지 말고 하나씩 따져가면서 꼼꼼하게 풀어주셔야 합니다. 정 헷갈린다면 치환해서 나오는 근도 새로운 문자로 둬서 구분을 해보도록 해요! 이것도 문제를 하나씩 풀어가면서 용어에 좀 익숙해져봐요! :-) 문제1 여기서 지칭하는 근은 x입니다. 치환했을 때의 치환문자 t가 근이 아니에요. 그래서 t로 치환했을 때는 해당 방정식의 두 근을 t1, t..

거듭제곱근 정의 관련 문제 모음

중3 때 배운 제곱근이 수학1에서는 거듭제곱근으로 확장돼서 나옵니다. 이 부분이 특히 개념이 어렵죠. 계속 반복해서 정의를 읽고 외우셔야 합니다. 그래서 우선은 거듭제곱근 관련 문제를 쭉 선별해두었으니 같이 풀어보면서 학습을 해 나갑시다.! 문제 1 정답 : ③ ① x : 16의 네제곱근은 4개이다. ② x : 세제곱근은 항상 실근이 존재한다. ③ o : 두 실근이 ⁴√81, -⁴√81이므로 곱하면 -3√3이다. ④ x : 둘 다 실근은 1개만 존재한다. ⑤ x : 항상 0이 실근으로 존재한다. 문제 2 정답 : ⑤번 ① o ② o ③ o ④ o ⑤ x : 교점의 y좌표가 아닌 x좌표와 같다. 문제 3 정답 : ⑤ ① x : 0이 있다. ② x : 복소수 범위에서 n개 존재합니다. ③ x : 두 개 중 ..

점화식 an+1=pan+q꼴 일반항 알고리즘 및 예제

오늘은 수학적 귀납법에서 종종 등장하는 점화식 유형 하나를 다뤄볼까합니다. 원래는 치환해서 푸는 내용까지 교육과정에 있었는데요-, 삭제되었습니다. 다만, 교육과정에서 목표하는 'n에 차례로 수를 대입해서 구한다'는 방법으로 일반항을 제외한 특정항의 경우에는 값을 구할 수 있습니다. 그래서 (아직까지도) 몇몇 교재에서 다루거나, 알려주시는 선생님들이 계셔서 포스팅하게 되었습니다. 바로 등차수열도, 등비수열도 아닌- 마치 일차함수처럼(?) 생긴 점화식이죠. (p가 1이면 등차수열이 되고, q=0이면 등비수열이 되기 때문에 그냥 일반항을 바로 구할 수 있습니다.) 오늘은 이 수열에서 차례로 n에 숫자를 대입하는 방법 말고, 직접 일반항을 구하는 방법을 배워볼 예정입니다. 단계는 아래와 같습니다. 1. 우선 주..

시그마 기호의 성질 정리 (증명과 주의점)

시그마의 성질, 주의해야 할 점과 증명들. 보통 수학1에서 수열파트를 배울 때, 등차/등비까지는 무난하게 학습하다가 처음으로 어려움을 느끼는 단원이 시그마가 아닐까 싶습니다. 처음 등장하는 기호이기도 하고요-, 오늘은 시그마 기호의 성질을 증명해보도록 할게요. 1. 합 시그마 기호 안에 합으로 들어있는 수열들은 각각 따로 시그마 기호를 걸어줄 수 있습니다. 마치 시그마 기호를 분배법칙으로 쓴 것 같은 모양새네요! 2. 차 차도 합과 마찬가지입니다. 3. 상수배 상수가 수열에 곱해져있는 경우에는 시그마 기호 밖으로 빼셔도 됩니다. 4. 상수 상수의 경우에는 n만큼 상수를 더한 것이므로 둘을 곱해서 적어주시면 됩니다. 이제부터 시그마 기호 쓸 때의 주의사항을 알아볼게요. 1. 합과 곱은 마치 분배법칙처럼 썼..

반응형