반응형

고등수학/수학2 26

함수의 극한 그래프 (분모가 0으로 가는 그래프들)

함수의 극한을 처음 배우다보면, 그래프를 그려서 극한을 구하는 부분이 가장 먼저 나옵니다. 그런데 제가 지도해보니 분수함수의 그래프 중 절댓값이나 제곱이 들어간 경우에는 학생들이 잘 못 그리는 것 같아 오늘의 포스팅 가볍게 작성해보았습니다. 유리함수나 무리함수의 그래프, 이차함수의 그래프가 기억이 안 나신다면 이전에 배웠던 내용들을 다시 가볍게 복습하는 걸 권해드립니다. 다만 분모에 제곱이 들어간 형태는 이전에 배운 게 아니라, 가볍게 개형만 그려보도록 할게요. 먼저 절댓값이 들어가는 경우입니다. y의 값이 음수가 나올 수 없으므로, x축 아래의 부분을 꺾어 올리시면 됩니다. 왜 이렇게 되는지 모르겠다면, 아래의 절댓값이 들어가는 함수 내용을 복습하시면 돼요. 링크 걸어둘게요! [함수] 절댓값이 포함된 ..

대칭을 이용한 고난도 문제 풀이 (x=a, y=b 대칭)

수학2 킬러문항 선대칭, 절댓값, 미분가능,연속 문제 선대칭을 이용해서 풀어야 하는 좋은 문제들 몇 개를 선정해보았습니다. 절댓값이나 미분가능/불가능 이슈를 반드시 숙지하고 있어야 해요. 그래프를 그리면 쉽게 풀리는 문제들입니다. 아니라면 엄.. 좀 많이 돌아가죠. 자잘한 테마별로 알아야 할 것들이 많은데 그 모든 걸 여기에서 해설하며 풀자니 양이 너무 많은 편이라, 우선은 상세한 풀이와 문제만 올려두고, 나머지 테마는 차차 하도록 해요. 이 부분을 풀기 전엔 먼저 x=a 대칭과 y=b 대칭에 관한 함수식 표현을 알고 계셔야 합니다. 그리고 절댓값이 포함된 그래프나 미분가능/불가능 이슈 모두 다요.. 내용은 기회가 되면 다음에 정리해서 올리도록 할게요! 문제1. 2015년 3월 B형 #28 먼저 주어진 ..

삼차함수 위의 한 점에서 그은 접선이 곡선과 다시 만나는 점

삼차함수의 접선이 곡선과 다시 만나는 점 오늘은 삼차함수에서 알아두면 매우 좋은 꿀팁 하나 알려드리려고 합니다. 바로 삼차함수의 접선이 다시 함수와 만나는 점에 관한 내용이에요. 삼차함수에서 접선과 함수가 다시 만나는 점의 좌표는, 세 근의 합을 이용하여 바로 구할 수 있습니다. :-) 이 유형은 은근 자주 쓰이기 때문에 꼭 익혀두시는 편이 좋습니다. 먼저 원리를 가볍게 증명하고 문제를 같이 풀어보도록 해요! 먼저 아래와 같이 삼차함수를 f(x), 접선을 g(x)라 두고, 접점의 좌표를 α(중근), β로 둡시다. 즉, 삼차함수와 일차함수의 교점이 α(중근), β입니다. 이는 두 함수식을 연립해서 근을 구하면 됩니다만, 그것도 귀찮기 때문에, 저희는 삼차방정식의 근과 계수와의 관계를 사용할 거에요! 여기서..

f(x+y)=f(x)+f(y)+p(x) 꼴 정리 (관계식이 주어진 경우의 미분,적분)

관계식이 주어진 경우의 미분, 적분 오늘은 주어진 식을 변형하여 도함수를 구하는 걸 해 볼 겁니다. f(x+y)=f(x)+f(y)+뭐시기~형태로 정의되는 함수를 변형시켜서 도함수를 구해보는거죠! 사실은 일반화도 가능하고, 로피탈을 이용하면 원하는 값만 빠르게 구할 수도 있지만 우선 정석대로 푸는 법을 익히는 것이 가장 기본인지라, 우선 오늘은 전부 정석대로 유도해서 풀어보도록 할 겁니다. 우선은 도함수의 정의를 알고 있어야겠죠? 주어진 함수에서 f(x+h)-f(x)의 식을 구할 수 있으므로 이걸 집어넣고 대입하여 정리하면 됩니다. 보통 문자는 x와 y로 주어지는데 편의상 보기 편하게 y 대신 h를 대입해서 정리하면 됩니다. 이렇게만 들으니 잘 이해가 안가죠? 문제를 직접 풀어보면서 익히도록 해요! 문제1..

[필수암기] 정적분 넓이 공식 (이차함수, 삼차함수 접선)

정적분 넓이 공식 (이차함수 근, 삼차함수 중근) 오늘은 굉장히 자주 사용되지만, 증명하기에 너무 오래 걸리기 때문에 반드시 외워야하는 적분 넓이 공식 두 가지를 살펴보려고 합니다. 첫번째는 가장 일반적으로 쓰이는 이차함수 넓이공식입니다. 1. 이차함수의 넓이 공식 이차함수와 축, 이차함수와 직선, 두 이차함수로 둘러싸인 부분의 넓이도 동일하게 구하시면 됩니다. 증명은 아래와 같이 직접 하시면 됩니다. 음.. 보면 아시겠지만, 이걸 매번 직접 계산한다면 매우 힘들겠죠? 게다가 두 근이 정수가 아니라 분수나 무리수가 나온다면 더 계산이 복잡해질테니, 되도록이면 공식을 외워서 쓰도록 합시다. 이건 대상이 최고차가 이차인 다항함수 사이에서는 항상 쓸 수 있는 방법이에요. 그럼 예시 문제를 몇 개 풀어볼까요? ..

함수의 연속 진위 판정 (합성함수 포함)

오늘은 함수의 연속 진위 판정입니다. 이전에 함수의 극한 진위 판정을 했었죠? 기억이 안 나신다면, 아래 링크를 보고 복습해오세요 :-) https://ladyang86.tistory.com/112 함수의 극한 진위판정(참/거짓) 문제 함수의 극한 진위 판정은 거의 대부분의 학생들이 질문하는 영역입니다. 이전에도 한 번 다룬적이 있는데, 오늘은 이 중 함수의 극한의 수렴/발산에 관한 진위판정 문제를 모아서 쭉 풀어볼까 ladyang86.tistory.com 오늘도 역시나 마찬가지로, 수학2의 범위에서만 검토한 명제들이므로, 다항함수, 분수함수 대상이라고 보셔야 해요. 삼각함수나 지수/로그함수는 제외하고 푸시면 됩니다. 그렇죠, 네, 문과용 수학입니다만.. 그리고 시험기간이 닥쳐서 당장 필요한 학생들이 분..

합성함수의 미분법 (다항함수의 거듭제곱)

수학2에서의 합성함수의 미분법 오늘은 미적분에 나오는 미분법 말고, 수학2에서 써먹을 수 있는 다항함수 위주로 다룰 거에요. 보통 수학2에서는 합성함수의 미분법을 따로 다루지 않기 때문에, 곱의 미분법을 다 풀어서 쓰던가, 아래와 같이 수학적 귀납법을 이용해서 증명 후, 사용합니다. 수학적 귀납법을 이용한 다항함수의 거듭제곱 형태 미분 증명 보통은 수학1을 먼저 배우므로 수학적 귀납법을 사용해서 증명하는 것 같아요. 우선은 가장 작은 자연수일 때 성립하는 걸 먼저 보여줍니다. 곱의 미분법을 사용하면 깔끔하게 나오므로 n=2일때가 쉽게 증명됩니다. 물론 아래와 같이 n=1일 때도 성립합니다만, f(x)의 0제곱이 들어 있어서 전 n=2일 때를 사용했어요. 어차피 이 공식을 사용하는 상황은 n≥2일 때니까요..

사차함수 중근의 성질 - 2011년 7월 나형 20번 해설

사차함수가 두 개의 중근을 가질 때를 살펴봅시다. 중근을 제외한 나머지 하나의 극값은 두 값의 중점에서의 함숫값입니다. 증명은 간단하니 한 번 빠르게 보도록 해요.! 문제 2011년 7월 나형 20번 h(x)=g(x)-f(x)이므로 h(x)=0의 근은 g(x)=f(x)가 되는 x의 값입니다. 1과 -2에서 접한다고 하였으니 이 둘이 중근이 되겠군요! 어때요, 참 쉽죠? 사차함수의 성질은 삼차보다는 많은 편인데 모두 다 외울 필요는 없고, 앞으로 몇 가지 필수적인 것들만 포스팅 해 둘테니 그 정도는 꼭 익혀두도록 합시다!

함수의 극한 진위판정(참/거짓) 문제

함수의 극한 진위 판정은 거의 대부분의 학생들이 질문하는 영역입니다. 이전에도 한 번 다룬적이 있는데, 오늘은 이 중 함수의 극한의 수렴/발산에 관한 진위판정 문제를 모아서 쭉 풀어볼까 합니다. 이전 포스팅은 아래를 보시면 됩니다. https://ladyang86.tistory.com/40 [함수의 수렴과 연속] 수렴, 발산과 연속, 불연속 진위판정 쉽게 하는 방법 오늘은 함수의 수렴과 연속의 성질들을 쉽게 외우는 방법에 대해 알아보겠습니다. 우리가 고2 내신을 준비하다보면, 진위 판정을 한 번쯤은 해보게 됩니다. 이게 은근 어렵죠. 나중에 좀 더 쓸텐 ladyang86.tistory.com 아래는 모두 수학2에서 다루는 함수를 기준으로 판단하시면 됩니다. 다항함수, 분수함수 - 우선은 요 정도랄까요? ..

미분계수 공식 정리 (h 등장하는 꼴일 때)

오늘은 미분계수 중, h가 나오는 형태의 공식을 정리해보았습니다. 우선은 그 전에 미분계수에 대한 기본 형태부터 복습해봐요! 순간변화율은 평균변화율의 극한입니다. 그러니 평균변화율에 lim를 붙여서 점을 점점 (a,f(a))로 보내면 됩니다. 그러면 극한값은 a에서의 접선의 기울기가 되겠죠? h가 0으로 갈 때 f(a+h)-f(a)/h = f'(a)가 되는 것은 모양 자체를 암기해주셔야 합니다. 아래와 같이 a의 자리에 다양한 숫자가 들어가도 아- 이게 '미분 계수구나'하고 보일때 까지요. :-) 숫자는 크게 어렵지 않죠? 가끔 0의 경우에는 0을 생략해서 쓰기도 하기 때문에, 당황하지 마시고 아래와 같이 푸시면 됩니다. 그럼 본격적으로 미분계수 공식을 외워봅시다. 사실 도함수 공식을 이용하여 직접 유도..

반응형