반응형

분류 전체보기 220

고등학교 생기부 수학 추천도서 목록

고등학교 생기부에 쓰기 좋은 수학 추천 도서 LIST생기부 독서목록을 걱정하셨다면오늘의 포스팅이 도움이 되실거에요.참, 구매링크는 모두 무료배송이니클릭해서 구매하시면 됩니다.! 책 제목(출판사, 저자, 역자) 페이지순으로 적어두었고,검색 후 최신 개정판만 실어두었어요. 실제로 책을 다 읽어보시려면우선은 페이지 수가 적은 책을먼저 공략해보는 것도괜찮은 전략일 듯 합니다.!수학 추천 도서1. 문명 수학의 필하모니(효형출판, 김홍종, 439p)https://coupa.ng/b8bfzk 문명 수학의 필하모니COUPANGwww.coupang.com2. 수학이 불완전한 세상에 대처하는 방법 (해나무, 박형주 외, 232p) https://coupa.ng/b8bfPc 수학이 불완전한 세상에 대처하는 방법COUPANG..

합성함수의 미분법 (다항함수의 거듭제곱)

수학2에서의 합성함수의 미분법 오늘은 미적분에 나오는 미분법 말고, 수학2에서 써먹을 수 있는 다항함수 위주로 다룰 거에요. 보통 수학2에서는 합성함수의 미분법을 따로 다루지 않기 때문에, 곱의 미분법을 다 풀어서 쓰던가, 아래와 같이 수학적 귀납법을 이용해서 증명 후, 사용합니다. 수학적 귀납법을 이용한 다항함수의 거듭제곱 형태 미분 증명 보통은 수학1을 먼저 배우므로 수학적 귀납법을 사용해서 증명하는 것 같아요. 우선은 가장 작은 자연수일 때 성립하는 걸 먼저 보여줍니다. 곱의 미분법을 사용하면 깔끔하게 나오므로 n=2일때가 쉽게 증명됩니다. 물론 아래와 같이 n=1일 때도 성립합니다만, f(x)의 0제곱이 들어 있어서 전 n=2일 때를 사용했어요. 어차피 이 공식을 사용하는 상황은 n≥2일 때니까요..

명제 - 진리집합 좌표평면으로 나타내기

명제가 참인지 거짓인지는 진리 집합간의 포함관계로 판단하시면 됩니다. 즉 P⊂Q이면 p⇒q인 것이죠. 부등식이나 방정식 역시 이러한 방법으로 나타내면 좀 더 편하게 판단할 수 있습니다. 문자가 a,b인 경우도 마찬가지인데, 우리는 항상 축을 x,y로 썼으니 오늘 실린 모든 예제는 다 x,y라는 문자만 사용할거에요. 혹시나 다른 문자가 나오더라도 문자 바꿔서 그리시면 됩니다. 예제1 p : x=0이거나 y=0이다. q : x²+y²=0이다. x=0은 y축, y=0은 x축이고 or는 합집합이므로 둘다 그려주면 됩니다. 진리집합을 다 표시한 다음에는 포함관계를 살펴보시면 돼요! 예제2 p : x=y q : x²=y² 이건 직선으로 나타내시면 됩니다. 특히 q의 경우에는 인수분해가 되므로 직선을 2개 그리시면 ..

사차함수 중근의 성질 - 2011년 7월 나형 20번 해설

사차함수가 두 개의 중근을 가질 때를 살펴봅시다. 중근을 제외한 나머지 하나의 극값은 두 값의 중점에서의 함숫값입니다. 증명은 간단하니 한 번 빠르게 보도록 해요.! 문제 2011년 7월 나형 20번 h(x)=g(x)-f(x)이므로 h(x)=0의 근은 g(x)=f(x)가 되는 x의 값입니다. 1과 -2에서 접한다고 하였으니 이 둘이 중근이 되겠군요! 어때요, 참 쉽죠? 사차함수의 성질은 삼차보다는 많은 편인데 모두 다 외울 필요는 없고, 앞으로 몇 가지 필수적인 것들만 포스팅 해 둘테니 그 정도는 꼭 익혀두도록 합시다!

유리함수의 평행이동 쉽게 찾는 법

원래는 다 이동해야 하는데, 빨리 찾는 꿀팁 알려 드릴게요. 바로 분모를 0으로 만드는 x의 값을 분자에 대입하시면 됩니다. 먼저 간단한 문제를 풀면서, 어떻게 사용하는 건지 알아보도록 할게요. 다음 중 평행이동해서 y=2/x와 겹치는 함수의 그래프를 찾아보도록 합시다. 어때요 굉장히 쉽죠? 그럼 이게 왜 이렇게 풀 수 있는건지 간단하게 증명을 한 번 해보도록 할게요. 방법은 간단합니다. 표준형을 일반형으로 만드는 과정을 잘 관찰하시면 돼요. * 주의사항 위는 분모의 x 계수가 1일 때이므로, 1이 아닐 때는 분모의 x 계수를 같이 보셔야 합니다. 문제를 같이 풀어볼까요? 사실 ①은 x축 방향으로 평행이동한 모양이 바로 보이기 때문에 쉽습니다. 분모의 계수와 분자에 남은 값을 같이 봐야하는 게 포인트죠...

서로 다른,같은 공을 상자에 넣는 문제

최근에 공을 사람 혹은 상자에 나눠주거나 넣는 문제가 종종 나와서 정리할 겸 올리는 포스팅입니다. 주로 문제 풀이 위주니 한 번 직접 풀어보세요. 문제1 (출처 : 14 수완 적통50p #3) 빨간 구슬 4개와 파란 구슬 5개가 있다. 이 개의 구슬을 세 사람에게 남김없이 나누어 주려고 한다. 세 사람이 각각 적어도 1개의 구슬을 받도록 나누어 주는 경우의 수를 구하시오. 전체를 구한 다음 못 받는 사람이 있는 경우를 제거하면 됩니다. 문제2 (출처 : 2021 나형, 9월 평가원 #29) 흰 공 4개와 검은 공 6개를 세 상자 A,B,C에 남김없이 나누어 넣을 때, 각 상자에 공이 2개 이상씩 들어가도록 나누어 넣는 경우의 수를 구하시오. (단, 같은 색 공끼리는 서로 구별하지 않는다.) 흰 공이 4개..

원 위의 점에서의 접선 빨리 구하는 팁!

원에서 접선은 가장 힘든 부분이죠. 오늘은 그 중에서 그나마 쉽게 구할 수 있는 접선을 배워볼거에요. 바로 원 위의 점에서 그은 접선의 방정식입니다. 우선은 공식을 먼저 증명해주고, 외워서 푸는 과정을 연습해보도록 해요. 기본적으로 접선도 직선이므로 기울기와 지나는 한 점을 알면 구할 수 있습니다. 아래 증명법은 읽어 보시되, 실제로 문제를 풀 때는 결과로 나오는 공식을 반드시 암기해서 바로 푸셔야 합니다. Case1) 중심이 원점이고, 반지름이 r인 원 위의 점 (a,b)에서 그은 접선의 방정식 구하기 그림으로 그리면 대충 이런 모양이죠. 이제 증명 해보겠습니다. 우선 보조선을 그어줍니다. 기본적으로 원에서 '접선'이 나온다고 하면 1) 접점과 중심을 이은 선이 접선과 수직임을 표기 2) 중심부터 접점..

2021년 7월 학평(인천) 확통 30번 상세 해설 - 색별로 공 넣는 문제

2021년 7월 학평(인천) 확률과 통계 30번 문제 상세 해설입니다. 해설이 모두 줄글로 되어있어 가독성이 떨어지는 관계로 그림으로 설명합니다. 우선 A가 흰공을 검은공보다 적게 받으므로 하얀 공을 기준으로 경우 별로 나누어서 세볼 거에요. Case1) A가 하양 1개, 검정 2개 가짐 : 불가 Case2) A가 하양 1개, 검정 3개 가짐 : 불가 같은 논리로 하양 2개, 검정 4개도 안됩니다. Case 3) A가 하양 1개, 검정 4개를 가짐 : 15개 남은 공의 색이 하양과 빨강뿐이므로, 이제 B,C,D에게 각각 하양 1개, 빨강 1개 이상씩 나눠주면 됩니다. 하양과 빨강을 중복조합을 이용하여 나눠줍니다. 즉 B,C,D에게 하얀공과 빨간공을 각각 1개 이상 나눠주는 경우의 수는 18이죠. 그런데 ..

헤론의 공식 증명 (세 변의 길이로 넓이 구하는 방법)

오늘은 삼각형의 세 번의 길이를 알 때 넓이를 바로 구할 수 있는 공식을 알아볼 거에요. 여러분, 이렇게 세 변의 길이가 주어진 삼각형의 넓이를 어떻게 구하시나요? 당연히 높이가 필요하니까 수선의 발을 그려서 구하면 되겠죠? 밑변을 7이 아닌 6으로 두면, 계산이 좀 쉬워집니다만 어쨌든 꽤 복잡하네요. 그렇지만 오늘 배울 헤론의 공식을 안다면? 이렇게 두 줄만에 간단하게 넓이가 구해진답니다! wow! 어떤가요? 벌써 기대되시죠?ㅎㅎ 그럼 우선 헤론의 공식이 뭔지부터 알아보도록 해요. 헤론의 공식 헤론의 공식은 그리스 시대의 수학자 헤론(Heron)의 이름을 따서 만든 공식입니다. 삼각형에서 세 변의 길이를 알 때, 넓이를 구할 수 있는 공식이죠. 증명은 중2,3때 배우는 피타고라스의 정리와 곱셈공식만 사..

함수의 극한 진위판정(참/거짓) 문제

함수의 극한 진위 판정은 거의 대부분의 학생들이 질문하는 영역입니다. 이전에도 한 번 다룬적이 있는데, 오늘은 이 중 함수의 극한의 수렴/발산에 관한 진위판정 문제를 모아서 쭉 풀어볼까 합니다. 이전 포스팅은 아래를 보시면 됩니다. https://ladyang86.tistory.com/40 [함수의 수렴과 연속] 수렴, 발산과 연속, 불연속 진위판정 쉽게 하는 방법 오늘은 함수의 수렴과 연속의 성질들을 쉽게 외우는 방법에 대해 알아보겠습니다. 우리가 고2 내신을 준비하다보면, 진위 판정을 한 번쯤은 해보게 됩니다. 이게 은근 어렵죠. 나중에 좀 더 쓸텐 ladyang86.tistory.com 아래는 모두 수학2에서 다루는 함수를 기준으로 판단하시면 됩니다. 다항함수, 분수함수 - 우선은 요 정도랄까요? ..

반응형