반응형

고등수학 146

대칭이동 - 선대칭 직선 기울기가 +1, -1일 때 빨리 하는 방법

오늘은 직선에 대한 선대칭 중 기울기가 +-1일 때 빨리하는 방법에 대해 알아보겠습니다. 선대칭은 기본적으로 2가지를 사용해서 풉니다. 직선과 수직인 기울기, 그리고 중점을 지난다는 점을 이용하죠. 그런데 기울기가 +1이거나 -1인 경우에는 그냥 점을 대입하는 것만으로 금방 풀 수 있답니다 :-) 우선 이 두 가지를 이용하여 증명을 해보도록 할게요.! 기울기가 1인 직선에 대하여 대칭인 도형의 좌표를 구해보겠습니다. 원래의 도형에 있는 점을 (x, y)라 하고, 대칭이동한 도형 위에 있는 점을 (X', Y')이라고 둡시다. f(x, y)=0이라는 식에 x 대신 Y'-p, y 대신 X'+p를 넣고 정리하여 f(Y'-p, X'+p)=0라고 쓰면 된다.! 근데 이 결론 자체가 별로 와닿지 않죠? 이럴 땐 그냥..

항등식 중 조립제법으로 푸는 유형 정리 (조립제법의 중복 사용)

항등식과 조립제법 오늘은 항등식 중, 같은 다항식으로 여러 번 나눈 문제들을 조립제법으로 푸는 방법을 익혀보도록 할게요. 이건 보통 일반적으로 증명.. 은 잘 안 하는 편입니다. 모두 다 서로 다른 문자를 세팅해서 쓰다 보면 식이 엄청 길어지거든요...! 그리고 차수도 커질수록, 쓰는 게 길어지죠. 그래서 일단 몫 부분은 대충 생략했고, 차수는 그냥 좀 더 늘려가면서 쓰시면 돼서 가장 일반적으로 다루는 3차식의 경우에만 증명 비슷 그리한 걸 해보았습니다. 우선은 주어진 삼차식을 (x-α)로 나누면 몫과 나머지가 나오겠죠? 그다음 몫으로 나온 부분만 계속 반복하여 (x-α)로 나누어줍니다. 언제까지? 3차면 3번으로 최고차 계수만 남을 때 까지요..!! 이걸 하나씩 다 떼서 쓰자니 너무 힘들어서 컬러를 다..

삼차함수 위의 한 점에서 그은 접선이 곡선과 다시 만나는 점

삼차함수의 접선이 곡선과 다시 만나는 점 오늘은 삼차함수에서 알아두면 매우 좋은 꿀팁 하나 알려드리려고 합니다. 바로 삼차함수의 접선이 다시 함수와 만나는 점에 관한 내용이에요. 삼차함수에서 접선과 함수가 다시 만나는 점의 좌표는, 세 근의 합을 이용하여 바로 구할 수 있습니다. :-) 이 유형은 은근 자주 쓰이기 때문에 꼭 익혀두시는 편이 좋습니다. 먼저 원리를 가볍게 증명하고 문제를 같이 풀어보도록 해요! 먼저 아래와 같이 삼차함수를 f(x), 접선을 g(x)라 두고, 접점의 좌표를 α(중근), β로 둡시다. 즉, 삼차함수와 일차함수의 교점이 α(중근), β입니다. 이는 두 함수식을 연립해서 근을 구하면 됩니다만, 그것도 귀찮기 때문에, 저희는 삼차방정식의 근과 계수와의 관계를 사용할 거에요! 여기서..

명제의 거짓 반례 조건

명제가 거짓임을 보이기 위한 반례 오늘은 명제 p이면 q이다가 거짓임을 보이기 위한 반례를 잡는 법을 배워보도록 해요! p이면 q이다. 이 명제가 참이라면 P⊂Q입니다. 이 명제가 거짓이라면 P에는 속하지만 Q에는 속하지 않는 원소가 있겠죠? 그게 바로 반례입니다. 즉 우리가 p이면 q이다가 거짓이라고 말하려면, p이지만 q가 아닌 원소를 갖고와야 하는 거죠. 예를 들어볼까요? p : 노래를 잘한다. q : 키가 크다. 여기서 우리가 p->q가 참이라고 주장하는 건 노래를 잘하면 키가 크다 이렇게 만들어 볼 수 있겠군요. 이 주장이 틀렸다는 걸 보여주려면 어떤 사람을 데려와야 할까요? 노래는 잘 하지만, 키는 작은 친구를 데려와야겠죠? 즉 p는 만족하지만 q는 만족하지 않는 원소가 반례입니다. 그럼 이제..

f(x+y)=f(x)+f(y)+p(x) 꼴 정리 (관계식이 주어진 경우의 미분,적분)

관계식이 주어진 경우의 미분, 적분 오늘은 주어진 식을 변형하여 도함수를 구하는 걸 해 볼 겁니다. f(x+y)=f(x)+f(y)+뭐시기~형태로 정의되는 함수를 변형시켜서 도함수를 구해보는거죠! 사실은 일반화도 가능하고, 로피탈을 이용하면 원하는 값만 빠르게 구할 수도 있지만 우선 정석대로 푸는 법을 익히는 것이 가장 기본인지라, 우선 오늘은 전부 정석대로 유도해서 풀어보도록 할 겁니다. 우선은 도함수의 정의를 알고 있어야겠죠? 주어진 함수에서 f(x+h)-f(x)의 식을 구할 수 있으므로 이걸 집어넣고 대입하여 정리하면 됩니다. 보통 문자는 x와 y로 주어지는데 편의상 보기 편하게 y 대신 h를 대입해서 정리하면 됩니다. 이렇게만 들으니 잘 이해가 안가죠? 문제를 직접 풀어보면서 익히도록 해요! 문제1..

[경우의 수] 최단경로 문제풀이#2 (실력정석)

최단거리 경우의 수 이 부분이 유형이 다양한데 문제지마다 다 실려있는 게 아니라, 문제풀이 포스팅을 몇 번 더 해볼까 합니다. 가장 기초적인 문제는 아래의 포스팅으로 먼저 풀어보시고, 이 정도는 다 풀 수 있고, 더 추가로 공부하고 싶은 경우에는 오늘 수록한 문제들을 추가로 더 도전해보세요! https://ladyang86.tistory.com/82 [경우의 수] 최단거리 문제풀이 #1 (기본문제) 최단거리 문제는 살짝만 바꿔도 조금씩 달라지므로 최대한 다양한 문제를 풀어서 연습하는 것이 중요합니다. 예제1. 아래 그림과 같은 도로망이 있을 때, A지점에서 출발하여 B까지 최단거리로 ladyang86.tistory.com 예제1 아래의 그림은 A와 D 사이의 경로를 나타내고 있다. 1. A에서 D로 가는..

점화식 an+1=pan+q꼴 일반항 알고리즘 및 예제

오늘은 수학적 귀납법에서 종종 등장하는 점화식 유형 하나를 다뤄볼까합니다. 원래는 치환해서 푸는 내용까지 교육과정에 있었는데요-, 삭제되었습니다. 다만, 교육과정에서 목표하는 'n에 차례로 수를 대입해서 구한다'는 방법으로 일반항을 제외한 특정항의 경우에는 값을 구할 수 있습니다. 그래서 (아직까지도) 몇몇 교재에서 다루거나, 알려주시는 선생님들이 계셔서 포스팅하게 되었습니다. 바로 등차수열도, 등비수열도 아닌- 마치 일차함수처럼(?) 생긴 점화식이죠. (p가 1이면 등차수열이 되고, q=0이면 등비수열이 되기 때문에 그냥 일반항을 바로 구할 수 있습니다.) 오늘은 이 수열에서 차례로 n에 숫자를 대입하는 방법 말고, 직접 일반항을 구하는 방법을 배워볼 예정입니다. 단계는 아래와 같습니다. 1. 우선 주..

시그마 기호의 성질 정리 (증명과 주의점)

시그마의 성질, 주의해야 할 점과 증명들. 보통 수학1에서 수열파트를 배울 때, 등차/등비까지는 무난하게 학습하다가 처음으로 어려움을 느끼는 단원이 시그마가 아닐까 싶습니다. 처음 등장하는 기호이기도 하고요-, 오늘은 시그마 기호의 성질을 증명해보도록 할게요. 1. 합 시그마 기호 안에 합으로 들어있는 수열들은 각각 따로 시그마 기호를 걸어줄 수 있습니다. 마치 시그마 기호를 분배법칙으로 쓴 것 같은 모양새네요! 2. 차 차도 합과 마찬가지입니다. 3. 상수배 상수가 수열에 곱해져있는 경우에는 시그마 기호 밖으로 빼셔도 됩니다. 4. 상수 상수의 경우에는 n만큼 상수를 더한 것이므로 둘을 곱해서 적어주시면 됩니다. 이제부터 시그마 기호 쓸 때의 주의사항을 알아볼게요. 1. 합과 곱은 마치 분배법칙처럼 썼..

지수함수와 로그함수의 평행이동, 대칭이동 주의사항

지수함수와 로그함수의 평행이동 또는 대칭이동에 대해 살펴봅시다. 기본적인 평행이동/대칭이동은 다들 아실테니 설명을 생략하고 넘어가겠습니다. 오늘은 종종 내신에서 다루는 지수함수 또는 로그함수를 평행이동, 대칭이동해서 만들 수 없는 모양을 물어보는 문제를 풀어볼거에요. 지수함수 밑이 같으면 얼마든지 평행이동 or 대칭이동해서 만들 수 있습니다. 앞에 상수배가 되어 있어도 얼마든지 평행이동으로 바꿀 수 있습니다. 다만 밑이 다른 건 폭이 다른거라 커버가 불가능합니다.! 문제1 ㄱ. y축으로 1만큼 평행이동 ㄴ. y축으로 대칭이동 후 x축으로 -log₂3만큼 평행이동 ㄷ. x축으로 대칭이동 후, y축으로 -3만큼 평행이동 ㄹ. 밑이 4이므로 불가능 정답 : ㄱ, ㄴ, ㄷ 문제2 ㄱ. x축으로 대칭이동 후 y축..

96%의 학생이 틀리는 방정식, 부등식 문제

예비 고1 학생들을 대상으로 물어보면 거의 99%, 못해도 96%의 학생들이 틀리는 방정식, 부등식 문제를 오늘 들고 왔습니다. 생긴 건 굉장히 심플하게 생겼는데, 아마 서술형으로 나오면 정답률이 50% 이하로 떨어질 거라고 예상하는 문제죠. 한 번 살펴볼까요? 1. 방정식 ax=b를 풀어라. 스크롤을 아래로 내리지 말고 한 번 풀어보세요. . . . . . . . . . . . . . 본인의 정답은 뭔가요? 보통 x=b/a라고 쓰고 끝납니다. 그렇지만 정답은 아래와 같죠. 생긴 게 일차방정식처럼 보이지만, 조건에 a가 0이 아니라는 말이 없으므로, 그것도 고려해서 경우를 나눠주어야 합니다. 이런 문제가 서술형으로 나오면 각 단계별로 배점이 배정되므로, x=b/a로만 썼다면, 점수를 반도 못 받겠죠? 그..

반응형