반응형

고등수학 146

길이비를 내/외분점으로 고치는 방법 (선분의 내분점,외분점 활용)

오늘은 선분의 내분점/외분점 문제 중 가장 많이들 헷갈려하는 선분의 길이비를 다룰까 합니다. 내분, 외분에 대한 정확한 정의와 개념이 없으면 풀기가 힘든 유형이죠. 공식보다는 선분을 m:n으로 내분/외분 한다는 의미를 먼저 복습하셔야 합니다. 1. 주어진 식을 비례식으로 표현합니다. 이 때 필요한 선행지식은 a:b=c:d이면 bc=ad라는 기본적인 것이죠 :-) 2. 좌표를 알고 있는 점을 찍고 등분점으로 나타냅니다. 3. 남은 점을 좌/우로 나누어 해당 길이비에 맞게 찍어준다. 4. 내/외분점으로 해석하여, 공식을 적용한다. 문제1 A(5,-2), B(-1,4)를 지나는 직선 AB위에 있고, 를 만족시키는 점 C의 좌표를 모두 구하시오. 해설 1. 주어진 식을 비례식으로 표현합니다. 를 비례식으로 나타..

[필수암기] 정적분 넓이 공식 (이차함수, 삼차함수 접선)

정적분 넓이 공식 (이차함수 근, 삼차함수 중근) 오늘은 굉장히 자주 사용되지만, 증명하기에 너무 오래 걸리기 때문에 반드시 외워야하는 적분 넓이 공식 두 가지를 살펴보려고 합니다. 첫번째는 가장 일반적으로 쓰이는 이차함수 넓이공식입니다. 1. 이차함수의 넓이 공식 이차함수와 축, 이차함수와 직선, 두 이차함수로 둘러싸인 부분의 넓이도 동일하게 구하시면 됩니다. 증명은 아래와 같이 직접 하시면 됩니다. 음.. 보면 아시겠지만, 이걸 매번 직접 계산한다면 매우 힘들겠죠? 게다가 두 근이 정수가 아니라 분수나 무리수가 나온다면 더 계산이 복잡해질테니, 되도록이면 공식을 외워서 쓰도록 합시다. 이건 대상이 최고차가 이차인 다항함수 사이에서는 항상 쓸 수 있는 방법이에요. 그럼 예시 문제를 몇 개 풀어볼까요? ..

표본평균 개념 + 직접 구하는 법

오늘은 표본평균에 관한 개념과 확률 직접 구하는 법을 좀 다뤄볼까 합니다. 왜냐면 이 부분을 가르치다보면 다들 이해는 완벽하게 못한 채 공식만 기계적으로 외워서 푸는 것 같은 느낌이 들기 때문이랄까요..? 가끔 표본평균의 확률을 직접 구하는 문제가 나오면 아에 해석을 못하는 경우도 종종 보이고.. 그래서 작성합니다! 표본평균은 뽑은 표본의 평균입니다. 즉 n개의 표본을 추출했다고 하면 아래와 같죠. 이렇게만 설명하면 별로 와닿지 않을테니, 직접 문제를 풀면서 한 번 이해해보도록 하죠! 상자에 숫자 1,3,5,7,9가 하나씩 적힌 다섯 장의 카드가 들어있다고 합시다. 크기가 5인 이 모집단에서 한 장의 카드를 임의추출할 때, 카드에 적힌 숫자를 확률변수 X라고 하면 X의 확률분포는 다음과 같습니다. 이걸 ..

우함수, 기함수 곱/합성 성질 정리

우함수와 기함수를 곱하면? 기함수에 우함수를 합성하면? 이런 것 궁금하셨던 분들 주목! 오늘은 수학(하)와 수학2에서 나오는 우함수와 기함수에 대해 정리를 해보도록 하겠습니다. 사실은 수학(하)의 함수파트에서 배울 수도 있고, 안 배울수도 있어요. 교육과정에 필수 포함된 내용은 아니거든요. 근데 수학2에서는 꼭 나옵니다. 그리고 수학2에서도 이게 본 내용은 아니에요. 그래서 수학(하)에서 배우지 않았더라면 알아서 학습해야하는(?) 부분입니다. 조금 억울할 수는 있겠지만.. 뭐.. 네.. 그냥 공부 열심히 합시다. 우선 우함수는 y축 대칭인 함수입니다. f(-x)=f(x)로 표현이 되죠. 기함수는 원점 대칭인 함수입니다. g(-x)=-g(x)로 쓸 수 있어요. 일반적으로 증명은 주어진 함수에 x 대신 -x..

함수의 연속 진위 판정 (합성함수 포함)

오늘은 함수의 연속 진위 판정입니다. 이전에 함수의 극한 진위 판정을 했었죠? 기억이 안 나신다면, 아래 링크를 보고 복습해오세요 :-) https://ladyang86.tistory.com/112 함수의 극한 진위판정(참/거짓) 문제 함수의 극한 진위 판정은 거의 대부분의 학생들이 질문하는 영역입니다. 이전에도 한 번 다룬적이 있는데, 오늘은 이 중 함수의 극한의 수렴/발산에 관한 진위판정 문제를 모아서 쭉 풀어볼까 ladyang86.tistory.com 오늘도 역시나 마찬가지로, 수학2의 범위에서만 검토한 명제들이므로, 다항함수, 분수함수 대상이라고 보셔야 해요. 삼각함수나 지수/로그함수는 제외하고 푸시면 됩니다. 그렇죠, 네, 문과용 수학입니다만.. 그리고 시험기간이 닥쳐서 당장 필요한 학생들이 분..

합성함수의 미분법 (다항함수의 거듭제곱)

수학2에서의 합성함수의 미분법 오늘은 미적분에 나오는 미분법 말고, 수학2에서 써먹을 수 있는 다항함수 위주로 다룰 거에요. 보통 수학2에서는 합성함수의 미분법을 따로 다루지 않기 때문에, 곱의 미분법을 다 풀어서 쓰던가, 아래와 같이 수학적 귀납법을 이용해서 증명 후, 사용합니다. 수학적 귀납법을 이용한 다항함수의 거듭제곱 형태 미분 증명 보통은 수학1을 먼저 배우므로 수학적 귀납법을 사용해서 증명하는 것 같아요. 우선은 가장 작은 자연수일 때 성립하는 걸 먼저 보여줍니다. 곱의 미분법을 사용하면 깔끔하게 나오므로 n=2일때가 쉽게 증명됩니다. 물론 아래와 같이 n=1일 때도 성립합니다만, f(x)의 0제곱이 들어 있어서 전 n=2일 때를 사용했어요. 어차피 이 공식을 사용하는 상황은 n≥2일 때니까요..

명제 - 진리집합 좌표평면으로 나타내기

명제가 참인지 거짓인지는 진리 집합간의 포함관계로 판단하시면 됩니다. 즉 P⊂Q이면 p⇒q인 것이죠. 부등식이나 방정식 역시 이러한 방법으로 나타내면 좀 더 편하게 판단할 수 있습니다. 문자가 a,b인 경우도 마찬가지인데, 우리는 항상 축을 x,y로 썼으니 오늘 실린 모든 예제는 다 x,y라는 문자만 사용할거에요. 혹시나 다른 문자가 나오더라도 문자 바꿔서 그리시면 됩니다. 예제1 p : x=0이거나 y=0이다. q : x²+y²=0이다. x=0은 y축, y=0은 x축이고 or는 합집합이므로 둘다 그려주면 됩니다. 진리집합을 다 표시한 다음에는 포함관계를 살펴보시면 돼요! 예제2 p : x=y q : x²=y² 이건 직선으로 나타내시면 됩니다. 특히 q의 경우에는 인수분해가 되므로 직선을 2개 그리시면 ..

사차함수 중근의 성질 - 2011년 7월 나형 20번 해설

사차함수가 두 개의 중근을 가질 때를 살펴봅시다. 중근을 제외한 나머지 하나의 극값은 두 값의 중점에서의 함숫값입니다. 증명은 간단하니 한 번 빠르게 보도록 해요.! 문제 2011년 7월 나형 20번 h(x)=g(x)-f(x)이므로 h(x)=0의 근은 g(x)=f(x)가 되는 x의 값입니다. 1과 -2에서 접한다고 하였으니 이 둘이 중근이 되겠군요! 어때요, 참 쉽죠? 사차함수의 성질은 삼차보다는 많은 편인데 모두 다 외울 필요는 없고, 앞으로 몇 가지 필수적인 것들만 포스팅 해 둘테니 그 정도는 꼭 익혀두도록 합시다!

유리함수의 평행이동 쉽게 찾는 법

원래는 다 이동해야 하는데, 빨리 찾는 꿀팁 알려 드릴게요. 바로 분모를 0으로 만드는 x의 값을 분자에 대입하시면 됩니다. 먼저 간단한 문제를 풀면서, 어떻게 사용하는 건지 알아보도록 할게요. 다음 중 평행이동해서 y=2/x와 겹치는 함수의 그래프를 찾아보도록 합시다. 어때요 굉장히 쉽죠? 그럼 이게 왜 이렇게 풀 수 있는건지 간단하게 증명을 한 번 해보도록 할게요. 방법은 간단합니다. 표준형을 일반형으로 만드는 과정을 잘 관찰하시면 돼요. * 주의사항 위는 분모의 x 계수가 1일 때이므로, 1이 아닐 때는 분모의 x 계수를 같이 보셔야 합니다. 문제를 같이 풀어볼까요? 사실 ①은 x축 방향으로 평행이동한 모양이 바로 보이기 때문에 쉽습니다. 분모의 계수와 분자에 남은 값을 같이 봐야하는 게 포인트죠...

서로 다른,같은 공을 상자에 넣는 문제

최근에 공을 사람 혹은 상자에 나눠주거나 넣는 문제가 종종 나와서 정리할 겸 올리는 포스팅입니다. 주로 문제 풀이 위주니 한 번 직접 풀어보세요. 문제1 (출처 : 14 수완 적통50p #3) 빨간 구슬 4개와 파란 구슬 5개가 있다. 이 개의 구슬을 세 사람에게 남김없이 나누어 주려고 한다. 세 사람이 각각 적어도 1개의 구슬을 받도록 나누어 주는 경우의 수를 구하시오. 전체를 구한 다음 못 받는 사람이 있는 경우를 제거하면 됩니다. 문제2 (출처 : 2021 나형, 9월 평가원 #29) 흰 공 4개와 검은 공 6개를 세 상자 A,B,C에 남김없이 나누어 넣을 때, 각 상자에 공이 2개 이상씩 들어가도록 나누어 넣는 경우의 수를 구하시오. (단, 같은 색 공끼리는 서로 구별하지 않는다.) 흰 공이 4개..

반응형