반응형

고등수학 146

[이항정리] 이항계수의 성질 - 제곱꼴

오늘은 이항계수의 성질 중 제곱의 합으로 된 부분을 살펴보겠습니다. 보통 책에서 성질의 증명을 모두 다 항등식의 계수로 설명을 해두는 편이라 처음 배울때 이해가 잘 안된다는 의견이 많더라구요. 그래서 이해하기 쉬운 예시 위주로 설명해볼까 합니다. 예시 남자 10명, 여자 10명 있는 반에서 청소를 할 10명을 고른다고 합시다. 전체 20명 중에서 10명을 뽑는 것이니, 20C10이 됩니다. 이 경우를 좀 더 상세하게 나눠볼까요? 10명을 뽑는 경우는 1. 남 0 & 여 10 2. 남 1 & 여 9 3. 남 2 & 여 8 . . . 10. 남 0 & 여 10의 총 10가지 경우를 각자 계산해서 다 더한 것과 같습니다. 그런데 조합 C의 성질 덕분에, 이를 제곱으로 표현할 수 있죠. 일반화 남자 n명, 여자..

[원순열] 정다면체 색칠하는 경우의 수 (5가지 모두 같은 방법으로 다룸)

오늘은 원순열에서 많이들 헷갈리는 정다면체 색칠하는 방법의 수에 대한 포스팅입니다. 정다면체가 다섯 종류만 있는 이유 우선 정다면체는 다섯 종류만 존재합니다. 왜 그런지는 사실은 중학교 1학년 때 배웁니다. 가볍게 설명해볼게요. 평면도형을 합쳐서 입체를 만드는 것인데 입체를 만들려면 한 꼭짓점에 평면도형을 세 개 이상 모아야합니다. 정삼각형으로 만들 수 있는 정다면체를 생각해보면, ① 정삼각형 세 개를 한 꼭짓점에 모아서 만드는 정사면체 ② 정삼각형 네 개를 한 꼭짓점에 모아서 만드는 정팔면체 ③ 정삼각형 다섯 개를 한 꼭짓점에 모아서 만드는 정이십면체 요 세가지가 가능합니다. 정삼각형을 한 꼭짓점에 여섯 개 모으면 평면이 되므로 입체도형 만드는 것이 불가능하죠. 다른 정다각형도 살펴본다면, 정사각형으로..

[경우의 수] 최단거리 문제풀이 #1 (기본문제)

최단거리 문제는 살짝만 바꿔도 조금씩 달라지므로 최대한 다양한 문제를 풀어서 연습하는 것이 중요합니다. 예제1. 아래 그림과 같은 도로망이 있을 때, A지점에서 출발하여 B까지 최단거리로 가는 방법의 수를 세어라. 최단거리 문제는 항상 최단 방향을 먼저 파악한 다음 푸셔야 합니다. 그리고 지날 수 없단 조건이 나온다면, 지날 수 있는 길만 남겨두고 세는 게 더 좋겠죠? sol1) 같은 것이 있는 순열로 풀이 sol2) 직접 세기 예제2 아래 그림과 같은 도로망이 있다. 색칠한 부분은 공사 중이어서 지나갈 수 없을 때, A지점에서 B 지점까지 최단거리로 가는 방법의 수를 구하여라. (단, 모든 도로는 평행하거나 수직으로 만난다.) 우선은 최단거리 방향을 파악합니다. 그리고 지날 수 없는 길은 버립시다. 도..

교란순열(완전순열) 점화식과 일반항

오늘은 이전에 올렸었던 교란순열(완전순열)의 심화버전 포스팅입니다. 교육과정에 있는 내용은 아니지만, 단순히 수형도를 세는 것에서 벗어나고 싶은 학생들을 위한 내용이랄까요..?ㅎㅎ 이전 포스팅 아래에 링크거니 참고하실 분은 하세요. https://ladyang86.tistory.com/71 [경우의 수] 시험 꿀팁 교란순열 (완전순열) 오늘은 시험 때 시간을 매우 단축시켜주는 꿀팁을 배워 볼 예정입니다. 교란순열(완전순열)이란? 교란순열 : Derangement 완전순열 : Complete permutation 혹은 서브 팩토리얼로 불립니다. Derangement 에서 D ladyang86.tistory.com 그럼 시작해볼까요? 오늘의 포스팅은 수학1의 점화식, 수학(하)의 집합 단원을 알아야 이해할 ..

고등수학/etc 2021.01.03

서로 다른 주사위 경우의 수 문제 총정리 (합,차, 그 외 기타)

서로 다른 주사위 두 개를 던지는 문제는 순서쌍을 세는 것보다, 표로 그려서 풉시다. 주사위 문제는 고3때까지 꾸준히 나옵니다. 그리고 위의 표를 이용해서 푸는 방법은 한결 같이 사용할 수 있죠 :-) 다년간 지도를 해보면, 표를 그리는 게 귀찮기 때문에(?) 많은 학생들이 그냥 순서쌍을 찾으려고 합니다. 그렇지만 순서쌍은 바뀌는 경우를 고려하지 못하거나 중간에 숫자를 빼먹는 경우가 많죠. (사실 숫자 쓰는 게 더 귀찮아요.) 주사위 문제를 단 한 번이라도 틀린 적이 있다면, 오늘 포스팅 주목!! 앞으로 주사위는 표 그려서 풉시다! 아래는 주사위 문제를 표로 풀면 좋은 이유입니다. 1. 합이 일정함. 합이 일정하므로 찾기 쉽습니다. 같은 색깔은 합이 같은 수들입니다. 표기하다보면 누락하는 걸 방지할 수 ..

유리함수 절댓값 그래프 그리기

절댓값이 포함된 함수의 그래프는 고3 때까지 계속 나오므로, 꼭 그릴 줄 알아야 하죠. 특히나 y=|f(x)|의 그래프와, y=f(|x|)의 그래프 두 개는 x에서 y로의 함수 그래프이므로, 그릴 줄 알아야 합니다. 오늘은 유리함수를 대상으로 y=f(x) 그래프를 그린 다음, ① y=f(|x|)의 그래프 ② y=|f(x)|의 그래프 요 두 개를 모두 그려볼게요. 유리함수의 절댓값 그래프를 다양하게 그려보는 연습이죠 :-) 우선 위의 내용을 숙지하고, 따라오셔야 합니다. 저걸 왜 저렇게 그리는지는 포스팅 분량이 너무 길어지므로, 아래 링크해 둔 절댓값 함수의 그래프를 참고하시면 됩니다. ↓ https://ladyang86.tistory.com/18 [함수] 절댓값이 포함된 함수의 그래프 그리는 방법 오늘 ..

[경우의 수] 시험 꿀팁 교란순열 (완전순열)

오늘은 시험 때 시간을 매우 단축시켜주는 꿀팁을 배워 볼 예정입니다. 교란순열(완전순열)이란? 교란순열 : Derangement 완전순열 : Complete permutation 혹은 서브 팩토리얼로 불립니다. Derangement 에서 D를 따와서, n개짜리 교란순열을 Dn이라고 씁니다. 정의 n개의 원소가 모두 자기 자신이 아닌 값으로 배정되는 순열 (모든 원소의 위치를 바꾸는 순열) 말이 좀 어렵죠? 아래 예제를 통해서 이해해봅시다. 아마 꼭 한 번씩은 보셨을 거에요:-) 예제1 학생을 An이라 하고 각자의 시험지를 an이라 합시다. 시험지를 바꿔서 채점한다고 할 때, 자신의 시험지는 자신이 채점하지 않을 때, 채점하는 방법의 수가 Dn입니다. 예제2 X={1,2,3,...,n} f : X->X로의..

[경우의 수] 동전문제 지불금액, 지불방법의 수

굉장히 유형화 되어 있지만 이해가 잘 안 가는 문제들이 몇개 있죠. 오늘은 경우의 수에서, 동전/혹은 지폐를 세는 문제를 좀 다뤄볼까 합니다. 간단하게 예제 하나만 다루면서 설명 해볼게요. 문제 100원짜리 동전 1개, 50원짜리 동전 3개, 10원짜리 동전 2개가 있다. 이 동전의 일부 또는 전부를 사용하여 지불할 수 있는 방법의 수를 a, 지불할 수 있는 금액의 수를 b라 할 때, a-b의 값은? (단, 0원을 지불하는 경우는 제외한다.) 1. 지불 할 수 있는 방법 어떤 동전을 몇 개 사용하느냐? 이게 포인트입니다. 같은 백원을 지불하더라도, 100원짜리 동전을 하나 쓰는 거랑, 50원짜리 동전을 두 개 쓰는 건 다르니까요. 이 부분은 양의 약수의 개수 세는 방법과 거의 같습니다. 100원/50원/..

합성함수의 극한값

오늘은 함수의 극한 중 초반 학습이 가장 어려운 합성함수 극한값을 살펴볼 예정입니다. 오늘 살펴볼 함수는 아래 f(x), g(x) 두 개입니다. 살펴볼 극한은 아래 3가지입니다. 극한이 존재하지 않는 경우는 없으니, 함정 없이 마음껏 풀어보세요. 그럼 하나씩 살펴볼까요? f에서 0의 우극한의 경우에는 1로 가까이 가는 값이 아니라, 계속 1이 나오므로, 합성할 때 극한이 아니라 함숫값으로 나옵니다. 여기에 유의하셔야해요.! 마지막 문제입니다. 괄호 안에 극한이 있는 경우에는, 그냥 극한값을 계산하여 함숫값으로 대입하시면 됩니다. 합성함수의 극한은 치환해서 보시면 편합니다. 나중에 빨라지면 그래프 보고 눈으로도 바로 찾을 수 있긴 한데, 그건 연습이 좀 많이 필요하죠. 다음에 또 다양한 문제 들고 올게요!

[경우의 수] 양의 약수의 개수와 총합, 곱까지 총정리

중학교 1학년때 배운 약수의 개수 문제가 고등학교에서도 그대로 나옵니다. 다만, 총합이나 총곱 등 조금 더 다루는 내용이 많아지죠. 여러개 찾아볼 필요 없이, 오늘은 이 내용을 총정리 해드리겠습니다! 일단 약수는 양의 정수(자연수)만 대상으로 셀 겁니다. 사실 범위를 정해놓지 않으면 무한개라 셀 수가 없습니다. 음, 간단하게 살펴볼까요? 그래서 이를 만족하는 자연수들을 대상으로 약수와 배수를 판정합니다. 그런데 만약 m,n이 자연수가 아니라면? 음수나 분수라면? 사실 더 나아가서 유리수, 무리수도 모두 약수로 가능합니다. 그나마 음의 '정수'까지는 셀 수 있더라도, 이를 넘어가면 개수를 셀 수 없죠. 뭐.. 이 부분은 대학교 과정이므로 더 이상 다루지는 않고 넘어갈게요. 본격적으로 약수를 세러 가봅시다!..

반응형