반응형

고등수학 146

원 위의 점에서의 접선 빨리 구하는 팁!

원에서 접선은 가장 힘든 부분이죠. 오늘은 그 중에서 그나마 쉽게 구할 수 있는 접선을 배워볼거에요. 바로 원 위의 점에서 그은 접선의 방정식입니다. 우선은 공식을 먼저 증명해주고, 외워서 푸는 과정을 연습해보도록 해요. 기본적으로 접선도 직선이므로 기울기와 지나는 한 점을 알면 구할 수 있습니다. 아래 증명법은 읽어 보시되, 실제로 문제를 풀 때는 결과로 나오는 공식을 반드시 암기해서 바로 푸셔야 합니다. Case1) 중심이 원점이고, 반지름이 r인 원 위의 점 (a,b)에서 그은 접선의 방정식 구하기 그림으로 그리면 대충 이런 모양이죠. 이제 증명 해보겠습니다. 우선 보조선을 그어줍니다. 기본적으로 원에서 '접선'이 나온다고 하면 1) 접점과 중심을 이은 선이 접선과 수직임을 표기 2) 중심부터 접점..

2021년 7월 학평(인천) 확통 30번 상세 해설 - 색별로 공 넣는 문제

2021년 7월 학평(인천) 확률과 통계 30번 문제 상세 해설입니다. 해설이 모두 줄글로 되어있어 가독성이 떨어지는 관계로 그림으로 설명합니다. 우선 A가 흰공을 검은공보다 적게 받으므로 하얀 공을 기준으로 경우 별로 나누어서 세볼 거에요. Case1) A가 하양 1개, 검정 2개 가짐 : 불가 Case2) A가 하양 1개, 검정 3개 가짐 : 불가 같은 논리로 하양 2개, 검정 4개도 안됩니다. Case 3) A가 하양 1개, 검정 4개를 가짐 : 15개 남은 공의 색이 하양과 빨강뿐이므로, 이제 B,C,D에게 각각 하양 1개, 빨강 1개 이상씩 나눠주면 됩니다. 하양과 빨강을 중복조합을 이용하여 나눠줍니다. 즉 B,C,D에게 하얀공과 빨간공을 각각 1개 이상 나눠주는 경우의 수는 18이죠. 그런데 ..

함수의 극한 진위판정(참/거짓) 문제

함수의 극한 진위 판정은 거의 대부분의 학생들이 질문하는 영역입니다. 이전에도 한 번 다룬적이 있는데, 오늘은 이 중 함수의 극한의 수렴/발산에 관한 진위판정 문제를 모아서 쭉 풀어볼까 합니다. 이전 포스팅은 아래를 보시면 됩니다. https://ladyang86.tistory.com/40 [함수의 수렴과 연속] 수렴, 발산과 연속, 불연속 진위판정 쉽게 하는 방법 오늘은 함수의 수렴과 연속의 성질들을 쉽게 외우는 방법에 대해 알아보겠습니다. 우리가 고2 내신을 준비하다보면, 진위 판정을 한 번쯤은 해보게 됩니다. 이게 은근 어렵죠. 나중에 좀 더 쓸텐 ladyang86.tistory.com 아래는 모두 수학2에서 다루는 함수를 기준으로 판단하시면 됩니다. 다항함수, 분수함수 - 우선은 요 정도랄까요? ..

미분계수 공식 정리 (h 등장하는 꼴일 때)

오늘은 미분계수 중, h가 나오는 형태의 공식을 정리해보았습니다. 우선은 그 전에 미분계수에 대한 기본 형태부터 복습해봐요! 순간변화율은 평균변화율의 극한입니다. 그러니 평균변화율에 lim를 붙여서 점을 점점 (a,f(a))로 보내면 됩니다. 그러면 극한값은 a에서의 접선의 기울기가 되겠죠? h가 0으로 갈 때 f(a+h)-f(a)/h = f'(a)가 되는 것은 모양 자체를 암기해주셔야 합니다. 아래와 같이 a의 자리에 다양한 숫자가 들어가도 아- 이게 '미분 계수구나'하고 보일때 까지요. :-) 숫자는 크게 어렵지 않죠? 가끔 0의 경우에는 0을 생략해서 쓰기도 하기 때문에, 당황하지 마시고 아래와 같이 푸시면 됩니다. 그럼 본격적으로 미분계수 공식을 외워봅시다. 사실 도함수 공식을 이용하여 직접 유도..

삼차함수 접선의 개수

오늘은 위치에 따라 삼차함수에 그을 수 있는 접선의 개수에 대해 정리해봅시다. 삼차함수의 접선의 개수는 교육과정에 있는 내용은 아닙니다. 그렇지만, 모의고사 등에 꾸준히 나오고, 내신에서 이 내용을 아느냐/모르느냐에 따라 시간 차이가 많이 나기 때문에 꼭 알아두는게 좋습니다. 접선의 개수를 구할 때는, 삼차함수의 그래프와 변곡점에서의 접선 이 두 가지는 경계로 그려놓고 판단하시면 됩니다. 변곡점이란? 변곡점이라는 용어 자체가 미적분에서 나와서 문과 학생들에게는 좀 생소한 용어죠. 간단하게 설명하자면, 그래프의 오목/볼록이 바뀌는 점입니다. 위로 볼록인 상태에서 아래로 볼록인 상태로 변하거나, 아래로 볼록인 상태에서 위로 볼록인 상태로 변하는 점이죠. 구하는 방법은 삼차함수에서는 두 번 미분해서 0되는 점..

집합의 정의 + 집합을 원소로 갖는 집합 문제 모음

집합안에 집합이 들어가 있는 집합 본 적 있죠? 예를들면 이런거요. 집합기호⊂와, 원소기호∈를 배운다음 A={Ø,{Ø},0}일 때, Ø⊂A Ø∈A {Ø}∈A 이런 거 헷갈리셨다면 오늘 주목! 이런 문제를 유형 쭉-할거니까 자신없는 친구들은 끝까지 포스팅 보도록 해요! 오늘은 집합의 정의와 집합을 원소로 갖는 집합에 대해 배워볼거에요. 집합의 정의 집합이란 '어떤 조건에 의하여 그 대상을 명확하게 구분할 수 있는 것들의 모임'입니다. 객관적인 조건들을 만족시키는 대상들의 모임이죠. 객관적이다라는 게 '누가 봐도 이견이 없는-' 이라고 보면 됩니다. 그러니까 '키가 큰 사람들의 모임' 이런 건 집합이 될 수 없습니다. 왜 일까요? 180cm인 사람은 이 집합에 들어갈 수 있을까요? 초등학생들 사이에서 180..

[원 접선의 방정식] 극선의 방정식

오늘은 알아두면 매우 강력한 내용을 배워볼까 합니다. 보통은 원의 방정식에서 가장 학습하기 어려워 하는 부분이 접선의 방정식입니다. 이 중에서도 극선에 관한 내용을 살펴볼거에요. 극선이 뭔가요? 원 밖의 점에서 원에 그은 접선은 항상 2개입니다. 그러니 접점도 항상 2개죠. 이 두 접점을 이은 직선을 극선이라고 합니다. 그러니까 l이 극선인 거죠! 극선의 방정식 구하는 법 * 아래의 모든 증명을 가시성을 높이기 위해 일부러 좌표를 서로 다른 문자로 썼습니다. 일반적인 교재에서는 해당 점을 모두 (x1, y1), (x2, y2)와 같이 표기하고 있으니 염두하고 보세요. (a,b)에서 원에 그은 두 접선을 l1, l2라고 합시다. 원 위의 점에서 그은 직선의 방정식은 쉽게 구할 수 있으므로 l1과 l2를 각..

5종 교과서 수학적 귀납법 문제 모음 (2015 개정기준)

신사고, 미래엔, 비상, 지학사, 교학사 교과서 5종을 싹 털어서 수학적 귀납법 문제를 모아 왔습니다! 기말고사 서술형에 단골로 출제되는 문항이기에, 통째로 증명하는 걸 연습해보도록 해요. 등식, 부등식, 배수판정으로 전체를 유형별 분류했고, 순서는 많은 교과서에 실린순으로 실어두었어요. 1. 등식 가장 기본적인 유형입니다. n=k일 때를 가정하고, n=k+1일 때도 성립하게끔 중간과정을 유도해주시면 되죠. 문제1 (교학사, 미래엔, 비상, 신사고, 지학사) 문제2 (교학사, 미래엔, 비상, 지학사) 문제3 (미래엔, 비상, 신사고, 지학사) 문제4 (교학사, 미래엔, 비상, 지학사) 문제5 (교학사, 비상, 지학사) 문제6 (미래엔, 신사고) 문제7 (미래엔) 문제8 (신사고) 문제9 (신사고) 2. ..

삼차방정식 f(ax+b)=0의 근에 관한 문제 (합,곱 쉽게 풀기)

오늘은 삼차방정식에서 f(ax+b)=0꼴의 근에 대한 여러 문제를 좀 풀어볼까 합니다. 우선 아래 관계식을 한 번 살펴봅시다. 증명자체는 간단합니다. 애초에 방정식의 '근'이라는 것이 식을 참으로 만드는 x의 값이니까요. 즉 f(x)=0의 세 근이 α,β,γ라면 식의 x자리에 α,β,γ를 넣었을 때 성립한다는 뜻이죠. 여기서 f(cx-d)=0의 근을 한 번 추론해봅시다. f라는 식은 (괄호)안에 α,β,γ가 들어가면 0이 나오는 식입니다. 그렇다면 (괄호)안에 들어있는 (cx-d)라는 식이 α,β,γ가 되면 참이 되겠죠? 이걸 그대로 정리만 해주면 됩니다. 방정식에서 '근'을 물어본다는 건, 결국 x가 뭐냐고 묻는 것이니까, x라는 문자에 관해 정리해주면 되는 것이죠. 간단하죠? 사실 이 부분은 이차방정..

삼차방정식 - 역수를 근으로 갖는 방정식 외 기타

이전에 이차방정식을 배우면서 계수를 통해 근을 빨리 구하는 방법을 배웠던 것 기억 나시나요? 근이 역수거나, 음수인 경우에는 금방 구할 수 있었죠. 만약 기억이 안 나신다면 아래 포스팅을 꼭꼭 복습해주시구요..! https://ladyang86.tistory.com/45 [이차방정식 꿀팁] 역수를 근으로 갖는 방정식 빨리 구하는 방법 오늘은 이차방정식에서 계수를 통해 근을 빨리 구하는 방법을 배워보도록 할게요. 원래는 근과 계수와의 관계를 이용하여 합과, 곱을 구하고 식을 직접 구성하면 됩니다. 그렇지만, 객관식인 경 ladyang86.tistory.com 오늘은 이걸 확장해서 삼차방정식인 경우에도 구해볼 거에요. 객관식인 경우에는 아래와 같이 바로 구하시면 됩니다. 삼차방정식은 최고차계수에 따라 그냥 ..

반응형